DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT BK NO. 91/42

GROUNDWATER OCCURRENCE ON THE MANN 1:250 000 SHEET

GEOLOGICAL SURVEY

by

R E READ

and

P S TEWKSBURY

MARCH 1991

DME 437/77

۰.

CONTENTS	PAGE
ABSTRACT	1
INTRODUCTION	2
TOPOGRAPHY AND CLIMATE	2
GEOLOGY	3
HISTORY	3
DRILLING RECORDS	4
WELL DRILLING	5
WELL SITING	21
HYDROGEOLOGY Cainozoic Sediments Crystalline Rocks	21 21 22
WATER QUALITY	28
HYDROCHEMISTRY	29
CONCLUSIONS	30
REFERENCES	31
TABLES	

÷

Table	1.	Rainfall at Giles Meteorological Station	2
Table	2	Well details	6
Table	3	Comparison of Wells in 1:100 000 sheets	20
Table	4	Comparison of drilling before and after 1980	20
Table	5	Comparison of well yields and rock type	23
Table	6	Well-yields and saprolite thickness	26
Table	7	Water Analyses	27

<u>з</u>, ;

• • • •

FIGURES

.

<u>Figure No</u>	• · · · · · · · · · · · · · · · · · · ·	<u>Plan No</u>
1	Locality Plan	S22036
2	Geological Map	S22037
3	Well Location Plan	91-252
4	Well yields vs depth of saprolite	S22038
5	Statistical distribution of standing water levels.	S22039
6	Statistical distribution of nitrate and fluoride.	S22040
7	Groundwater prospects	S22041
8	Selected Fingerprint diagrams.	S22089

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT BK NO. 91/42 DME NO. 437/77 G01566

GROUNDWATER OCCURRENCE ON THE MANN 1:250 000 SHEET

ABSTRACT

The MANN 1:250 000 sheet lies in the extreme northwest corner of SA. The area is arid. The entire sheet is underlain by crystalline rocks of the Musgrave Complex.

Most wells have been drilled near the Mann and Tomkinson Ranges which lie across the northern part of the sheet. This area has both the best well-yields and lowest salinities.

The plains with scattered inselbergs away from the ranges have a low success rate for drilling and salinities up to 5000 mg/L.

Since 1980 the average number of metres drilled per successful well has declined from 95 to 73 in the northern half of the sheet. This is believed to be a combination of deeper drilling and improved well-siting.

Straight valleys and major faults are the best guides to siting successful wells.

About two-thirds of wells drilled through over 20m of saprolite yielded over 0.5 L/s.

Thick saprolite did not improve the chances of finding water in the underlying unweathered rock.

No significant differences were found between rock types in the northern part of the sheet.

In the southern half of the sheet wells drilled in the Wataru Gneiss had a particularly low success rate.

A REALY YE

This unit is seldom fractured and even when deeply weathered has low permeability.

One well is known to be in a palaeo-channel. These palaeo-channels are hard to locate, but have the potential for sustained yields.

INTRODUCTION

The MANN 1:250 000 sheet lies in the extreme northwest corner of SA in the Pitjantjatjara Homelands (Fig. 1). Over the last twenty years a considerable amount of drilling has been done firstly in connection with mineral exploration and then for the use of the Aboriginal population who have moved back into the area.

The purpose of this report is to document knowledge that has been gained on groundwater occurrence and well siting.

TOPOGRAPHY AND CLIMATE

The area is arid. Rainfall statistics for Giles 126 km north-west of the north-west corner of the sheet are in Table 1.

Month	J	F	M	. A	М	J	J	A	S	0	N	D	Annual
Mean (mm)	30	48	28	16	16	17	10	12	11	16	22	31	256
Median (mm)	19	16	. 16	2	8	6	2	1	2	5	11	26	245

Table 1

Rainfall at Giles Meterological Station (1956 to 1988)

Although the climate is generally dry heavy rain-fall occurs at times, usually in summer. These infrequent events are probably responsible for most groundwater recharge. The Mann and Tomkinson Ranges run east-west across the northern part of the sheet, forming both a groundwater and surface water divide.

3

To the south of the ranges is a large plain with scattered insebergs.

Well defined water-courses are restricted to the ranges of hills and the plains close to them.

GEOLOGY

The sheet has been mapped by Thomson (1962).

The entire sheet is underlain by crystalline rocks of the Musgrave Complex.

The most important structural feature is the Mann Fault. Numerous smaller faults occur in the outcropping rocks of the northern part of the sheet (Fig. 2).

HISTORY

In the 1960's SADME undertook mineral exploration work in the area. At this time most of the Aboriginals had moved to settlements further east.

In the 1970's came the outstation movement, when Aboriginals in small groups moved back into their traditional lands. These groups required reliable water supplies.

In 1975 Pipalyatjara was set up using water wells drilled to supply Mount Davies Camp during the mineral exploration program. Pipalyatjara was originally intended as a staging post for resettlement of traditional homelands, but has now become an

G01566

established community. Kalka was established in 1978 as a resource centre.

The SADME conducted drilling programmes in the area in 1970, 1976 and 1978.

Since 1980 drilling has been done by an Alice Springs contractor supervised on site by a Pitjantjatjara Council representative. Sites have mostly been selected by a SADME geologist.

DRILLING RECORDS

Prior to 1980 nearly all wells on the MANN sheet were drilled by SADME rigs. These wells are reasonably documented, although few have good geological logs. Samples were often logged off-site by sub-professionals, and in many cases the driller's log is more useful.

About 60 mineral exploration wells have been drilled in the northwest part of the sheet. These are included in the water well records system, but contain no water information and have been disregarded for this study.

Since 1980 drilling has been by private contractors. W e l l Completion Reports, as required by the Water Resources Act are available for these wells, but the standard of recording varies from good to poor depending on the operator.

Overall the MANN sheet is one of the better recorded portions of, the State with regard to water well drilling.

WELL DRILLING

Table 2 shows all known wells in the area. Locations are in Figure 3.

Table 3 shows a breakdown of numbers of wells in the six 100 000 sheets.

It can be seen that in the three northern sheets (4745, 4845 and 4945). 47 wells have been drilled, 14 yielding over 0.5 L/s. In the three southern sheets only 14 wells have been drilled, and 2 yield over 0.5 L/s.

The large amount of failed drilling around Kumamata has contributed to the low overal' success rate in the southern part of the sheet.

However, it is clearly more difficult to locate water supplies in the southern part of the sheet, away from the Mann and Tomkinson Ranges.

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
			12/5/76	40	26	12.5	0.35	1387(D)	0-9 -26 -23 -32 -39.5 -40	Silcrete Clay Silcrete? Sand and siltstone Sand Clay
	· ·	2	•	7	(2nd att	empt for	/3)			
Kuntjanyu	· · ·	3	21/11/77	47	44.5 47	10.6	0.6 1.5	1590	-8 -44.5 -47	Mangalija Limesion Clay ?laterite
Aralya	2 Pmw	4	27/1/82	60			Dry		0-3 -60	Sandy clay Granite
W	Pmw	5	27/1/82	60			Dry		0-6 -60	Sandy clay Granite
-	Emw	6	10/8/87	12			Dry		-2 -11.5 -12	Sand Sandstone Granite
-	2mw	7	9/3/87	22	13.22	13.60	0.6	6565	-12 -22.5	-1Soil Gravelly clay Soft limestone
•	Pmw	8	11/8/87	2.5			Dry		0-2 2.5	Clay granite

TABLE 2 Wells on the MANN sheet

* Taken from geological map

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
	Emm b?	4745WW1	15/12/56	12.8	-	-	-	-	0-1.2 1.2 -7.6	Red sits + fine sands Subangular pebbles + silicified
•									7.6-12.8	grey crystalline rock
	emm b	4745 2	30/1/57	45.7	33.5	18.0	0.39	1404	0-4.5 4.5-23.2	Red silts + sand Brown sandy limestone
									23.2-44 44-46	Weathered clay Metasediment
	Εβg?	4745 3	16/8/55	33.5	28.0	27.1	0.65	687	0-2.4 2.4-7.0	Rusty brown fine sands
									2.4-7.0 7.0-19.5 19.5-31.1	Sandy limestone Sandy mari Brown, white, grey sands, gravels pebbles
	Pmm i?	4745 4	24/8/55	32.9	22.6	20.1	1.04	662	0-2.7 2.7-8.8 8.8-13.7	Sand day fine grave Marly sands + graves Cream and blue limestone with
									13.7-28.0	quartzite + grave Sandy limestone
									28.0-32.9	+ gravel Weathered granite

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
	2mm i?	4745 5	27/7/55	37.5	24.4	21.3	0.13	523	0-0.6 0.6-2.7 2.7-8.8	Sand clay Sand marl Clay with sand - Fe rich gravels
					ی . بر ایست	·.			8.8-15.2	Granitic gravels
			•						15.2-17.1	Grey conglomeration
				*	······································	-			17.1-31.1	Various sands gravels and pebbles
	2mm a	4745WW6	23/10/56	26.5	-		-	-	0-2.6 2.6-7.9 7.9-12.2 12.2-26.5	Clay Gravel and clay Weathered Amphibolite
	2mm a	4745 7	31/8/55	12.8	-	-	-	-	0-5.8 5.8-7.6	Sandy clay Sandy marl - quartzite
									7. 6 -12.8	Grey + blue quartzit
	Pmm a	4745 8	1/11/56	7.6	- 1	-	-	-	0-3.0 3.0-7.6	Weathered granite Silicified rock.
	Pmm i	4745 9	9/9/55	13.7	-	-	-	-	0-1.1 1.1-3.9 3.9-9.1 9.1-13.7	Red sandy clay Brown gritty mar Gritty marl + grave Coloured quartzite

.

8

•

Nam o	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
	emm i	4745 10	15/7/55	39.6	32.9	32.9	0.05	· · · •	0-0.5 0.5-1 1-3.0 3.0-24.4 24.4-37.5 37.5-39.6	Red soil Sheet limestone Limestone marl Limey clay Weathered granite Granite gneiss
	Ebg ?	4745 11	14/9/55	45.7	40.8	33.5	0.07	1165	0-1.5 1.5-3.7	Brown sandy soil Light brown marl + fine gravel
				•	•			· · · · · · · · · · · · · · · · · · ·	3.7-7.6	Clay + granite + quartzite gravel
			,		·				7.6-15.2	Brown + grey clay
·							ì		15.2-37.8	+ fine gravel Brown/grey marl with granite grit + mica
									37.4-45.7	Light green + blue quartzite + schist
	Ebg ?	4745 12	6/9/55	36.9	-	-	-	-	0-1.5	Brown fine sandy soil
									1.5-3.4	Brown rubbly travertine limestone
									3.4-5.8	Fine sand, gravel + limestone
									5.8-15.2	Pati clay + granitic ferruginous quartz gravel.
			•						15.2-21.3	Marl + some white clay
									21.3-36.9	Grey/bluish quartzite

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
		4745 13	Mineral Inves	tigation						
•		4745 14	14/10/65	74.98	48.8	-	-	851		Mineral Investigation
	. `	4745 15	Mineral Inves	tigation	•					0
	•	4745 16	19/10/65	44.5	38.1	-	-	649		Mineral Investigation
		4745 17								Mineral Investigation
		4745 18 ~								Mineral Investigation
	· A	4745 19								Mineral Investigation
		4745 20 🖉	1/11/65	62.2	47.2	42.1	-	790		Mineral Investigation
	•	°4745 21								Mineral Investigation
-		4745 22								Mineral Investigation
		4745 23 👘	*	•						Mineral Investigation
		4745 24								Mineral Investigation
		4745 25								Mineral Investigation
		4745 26								Mineral Investigation
		4745 27			•					Mineral Investigation
		4745 28								Mineral Investigation
		4745 2 9								Mineral Investigation
		4745 30								Mineral Investigation
		4745 31								Mineral Investigation
	emm a	4745 32	9/10/70	30.5	18.6	17.1	0.13	800	0-1.5 1.5-6.1 6.1-30.5	Silt Limestone Quartzite (gneiss grey)
Nyumbantja (MD3)	emm a	4745 33	3/10/70	31.4	25.0	22.3	0.47	645	0-1.5 1.5-3.1 3.1-31.4	Silt Conglomerate Quatzle (sandslone)

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
	<mark>Ε</mark> βg	4745 34	30/9/70	18.3	16.5	14.3	0.33	1015	0-3.1 3.1-6.2 6.2-12.4 12.4-18.3	Siltstone Conglomerate Limestone Quartzite
	Emm a?	4745 35	26/9/70	35.1	24.4	21.5	3.9	614	0-1.5 1.5-3.1	Calcareous silt Conglomerat (grains + quartz
		· ·		• •			~* *		3.1-23.4	Silistone + limestor fragments
					1 	· · •	≂ x•	۰. ۳	23.4-33.5	Conglomerat (gneiss + quart
					•				33.5-35.1	Siltstone + gneis
	Pmm a?	4745 36	6/10/70	34.1	24.4	2.1	3.7	670	0-1.5	Siltstone + fin quartz
									1.5-12.2	Conglomerat Siltstone + gneis
									12.2-28.9 28.9-34.1	Silistone + limeston Gneiss + sandston
	Emm a	4745 37	13/10/70	32.0	29.3	18.0	0.8	700	0-1.5 1.5-13.7 13.7-32.0	Silty clay Limestone, sandstor Quartzite + som Gneiss
	?	4745 38	15/10/70	39.6	20.4	17.4	0.65	637	0-1.5 1.5-12.2	Sandy clay Limestone + son fine quartz

G01566

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
<u></u>									12.2-19.8	Conglomerate
		•							19.8-39.6	(quartz + siltstone) Silty + sandy conglomerate quartzite + limestone fragments.
		4745 39-71	24 - 1	·			·			Mineral Investigation
	Ε βg b	4745 72	14/5/76	6	• • • • • •	-	-	-	0-6	Alluvial sand and gravels (some weathered granitic matrix).
	Εβg b	4745 73	15/5/76	50	•	-	-	-	0-5	Alluvial sandy
									5-50	gravels. Partially weathered to fresh granite.
	?	4745 74	15/11/77	4	-	-	-	• .		
	Ŷ ?	4745 75	15/11/77	57	32 37 42	-	- - 0.3	- 4850 5200	0-0.5 0.5-5.5 5.5-14	Sand Calcrete Silistone + calcrete
			•	· .					14-15 15-57	concretion Calcrete Clay silty with calcrete concretions
	2mm i	4745 76	7/12/77	14	-	-	-	-	0-14	Sand, gravel

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
	emm i	4745 77	8/12/77	22.5	14.5	11.5	0.32	600	0-3 3-9 9-27.5	Silty gravely clay Alluvial gravel Siliceous duricrust
	Еβ д ?	4745 78	23/9/78	40.5	34	30		540	0-3 3-24 24-40.5	Red soil Calcrete sand Fine sand + rubbly jasper + gabbro gravel.
	Emm a	4745 79	27/9/78	16.5	11.5 13.0	9.3	1.8	800	0-3 3-16.5	Red sand clay Granulite (highly weathered at top
· .	emm a	4745 80	29/9/78	50.5	30.8	30.5	·	-	0-2 2-12 12-50.5	Alluvium Strongly weathered granulite Slightly weathered granulite
	. :	4745 81 82	•				••••••••••••••••••••••••••••••••••••••			Mineral Investigation Mineral Investigation
	Pmm a	83	2/7/82	43	36	23	1.0	610	0-6 6-21 21-37 37-43	Top soil Broken limestone Sandy clay Fresh granite
Kalka In valley near major fault zone	e mm	4745 84	25/1/82	49	Dry	-	-	-	0-24 24-36 36-44	Clay Broken granite Granite quartz

· • •

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
Kalka In valley near major fault zone.	e mm	85	26/1/82	40	27	-	0.9	-	0-12 12-24 24-30 30-40	Clay Gravelly clay Gravel + sand. Clay.
llitjara In straight valley at 020°T parallel to small faults	Emma	86	1/7/82	30	18 26	14.5	seepage 0.6	- 590	0-3 3-6 6-24 24-27	Topsoil Broken granite Sandy clay Sandy day + broke granite
•			ر» مسیری معند بی است						27-30	Granite
Pipalyatjara MD 11 In open area away from hills.	~?	87	7/5/83	36	-	Dry	-	-	0-2 2-24 24-36	Clay Broken granite clay. Hard granite.
Yaparng In centre of straight E-W valle	? ?y	88	2/4/84	60	Dry	, -	-	-	0-3 3-36 36-61	Sand Sand + clay Sandy clay wi bits of decompose
Nyikakurra Open sand-hill ar no siting	? ea,	89	1/4/84	42	18 34	- 25	seepage 4.0	1080	0-24 24-42	granite. Sandy + clay Broken granite.
Yapamg Along strike from mafic/ultramafic rocks over possib fault.		90	27/4/87	30	Dry	-	-	-	0-6 6-18 18-30	Sand clay Clay Granite

Name	Bedrock* Unit	Unit No	Date Completed	Depth (m)	Depth Water Cut (m)	SWL (m)	Supply L/s	Salinity mg/L	Depth (m)	Strata Descriptions
Yaparng ? drillers site	?	91	28/4/87	30	Dry	••••••••••••••••••••••••••••••••••••••	-	-	0-6 6-18 18-30	Sandy clay Weathered granite Quartz
Pipalyatjara MD 13 Over gabbro close to two major fault zones.	₽βg	4745 92	16/5/88		23	17	2 _	770	0-3 3-9 9-38 38-43	Brown soil Calcrete Gabbro weathered Fresh gabbro
Yaparng Drillers site	2mma	93	23/9/88	50	33.5 44	33.5		<u>ب</u> 615 	0-4 4-33 33-50	Sand Sandy clay Gravels
		· ·		* ***						

		•	Local Name	Unit Number	Date Drilled	Depth (m)	Water Cut	Water Level	Supply Vs	Salinity		Log
		emma		4845 1	8/10/66	36.6	24.4	21.8	0.33	645		
		Ργ _s	Lake Wilson	4845 2 1	1/4/76	54.5	39 43	3.25	0.9	1675	0-2 2-16 16-24 24-32 32-42 42-54.5	Alluvial Sand Alluvial sand + gravels Sandy gravelly clay Clay (Plastic) Silcrete Fractured pebbly weathered feldspar gneiss.
•• * •		emma	YY1	4845 3	18/5/76	20.5	11.5	8.3	0.9	790	0-2 2-3 3-14 14-19 19-20.5	Alluvial sand Weathered granulite Partly weathered granite Black basic dyke Dense granulite
		Pmma	l	4845 4	29/1/82	49	27 40	-	0.25 3.7		0-24 24-36 36-43 43-49	Clay Gravelly clay Gravel + Sand Clay
	Open area, no sit	ting ?	Willi Willi	4845 5	1/4/84	36	21	13	1.5	2000	0-2 2-4 4-36	Sand Granite Hard sand + clay
				4944 1	20/10/7	0 25	Dry			0-6	Sand 6-14 -17 -19 -25	Sandy clay Sandstone Gravel Granulite

			Local Name	Unit Number	Date Drilled	Depth (m)	Water Cut	Water Level	Su pply I/s	Salinity		Log
		e mma		2	25/10/7	0 32		Dry			0-3 -6 -10 -21 -32	Sand Gravel Sand and quartzite Soft within quartzite Fresh quartzite
·		emma		3	24/3/76	38		Dry			-2 -6 -22 -38	Sand gneiss Slightly Fresh gneiss
		emma		4	23/3/76	.5		Dry			-2 -5	Sand W gneiss
	· . ·	Εγ ₅		5	26/3/76	36	18	7.6	0.4	750	-7 -18 -34	Sand Clayey sand w and grave
								.*•• ·			-36	grainstone Fresh granitoid
		emma		6	26/3/76	8		Dry				
		E mma		7	26/3/76	7.5			Dry		-4 -7	Sand Part within granulite
		emma		4944 8	27/3/76	31.5	85	8.1	0.5	540	-1.5 -3 31	Sand Dolerite Granulite
Kunamata	In gap suspected fault	?		9	5/7/82	43	33		0.35	830	-6 -21 -43	Sand Sand and clay Granite

, <u>.</u>

	· ·		Local Name	Unit Number	Date Drilled	Depth (m)	Water Cut	Water Level	Supply I/s	Salinity		Log
Kunamata	Redrill of 4944/5	₽γ₅		10	30/1/82	43		Nil				7m from /5
Kunamata	Redrill of 4944/5	Ργ ₅		11	30/1/82	18		Nil				1m from / 5
		Emma		4945 1	17/6/66	55	35	24	0.5	830	-3 -18 -55	Sand Clay Acid granulite, parl weathered
í		emma		2 ())) -)	6/5/66	15			Dry		-3	Sand and grave granulitic become fresh and depth.
		emma		(3 -	5/5/66	46			Small	700	-4 -32 -46	Sand Clay Granulitic
		Pmma		4	18/10/7	0 38		27	0.01	790	-6 -11 -24 -27 -38	Sand Sandy clay Granulite, some soft bands Sandstone Granulite
		Pmma	l	5	23/10/7	0 31	-		Dry		-4 -12 -14 -20 23 31	Sand Sandy clay Limestone Granulite Sandstone Dense granulite
•		<u>e</u> mma	L _	6	28/8/78	35	9. 22 29	7	0.45	1360	-6 -21 -34	Sand Weathered Emm Weathered Emm

			Local Name	Unit Number	Date Drilled	Depth (m)	Water Cut	Water Level	Supply I/s	Salinity		Log
		Ρ γ ₈		7	3/10/78	30	14 23	10	0.47	660	-6 -9 -12 -30	Clayey sand Clayey sand + bedrock Weathered granulite Granulite
				8		8			•		·	Abandoned (twist off)
Walpa	SE end of Mann Ranges	2mma		9	3/7/82	52	47	23	0.6	770	-6 -20 -48 -52	Sand Clay Sand Broken granite
Angatja	Attempt to intersect fault at 090°T	Εγ _s		10	11/10/8	2 52	•		seepage		-6 -9 -54	Sandy clay Weathered granite Granite
Angatja	In valley N of Angatja	₽γ₅		11	11/10/8	8 36		• . •	Nil		-8 36	Sandy clay Granite
Umpukula	In valley SE of Mann Range, stand for 4945/5	? by		12	4/5/88	55			1	500		Alluvium.
Angatja	In gap on trace of well-jointed zone at 170°T	₽γ₅		13	15/5/88	43			Dry		-6 -43	Sand Emm
Kanypi	Stand by for 4945/6 opposite N-S trending valley and about 1km N of Mai Fault.			14	16/5/88	43	37		0.5		-3 -6 -13	Sand Calcrete Very weathered granulite

Sheet	No. of Recorded Wells	No. of* Water Wells	No Yielding over 0.5 L/s	Median Yield L/s
4744	8	6	2 (one saline)	0
4745	93	29	14	0.3
4844	0	0	0	-
4845	5	5 8	4	0.9
4944	11	8	0 (Most in Kunamata ar	ea) 0
4945	14	13	6	0.01
TOTAL	131	61	24	

TABLE 3 Wells in 1:100 000 sheets

* Leaving out mineral investigation wells and wells abandoned at shallow depth because of drilling problems.

Drilling results from before and after 1980 were compared for the northern three sheets (Table 4).

TABLE 4 (Sheets 4745, 4845, 4945) Comparison of drilling before and after 1980

	Pre 1980	Post 1980
No. Water wells	38	18
Total metres	1 232	727
Average depth	32	40
Median yield (L/s)	0.4	0.6
Wells > 0.5 L/s	13 (34%)	10 (56%)
Well > 1 L/s	7 (18%)	5 (28%)
metres drilled per well with >0.5 L/s	95 m	73 m

1. Y.

Deeper drilling, and possibly better siting has resulted in improved success.

Well Completion

Most wells yield water from fairly competent rock and can be completed either open-hole or with slotted casing.

One well in sand in a palaeochannel required a screen for successful completion.

WELL SITING

Since 1982 the geologist's reasons for siting wells have been recorded. The most commonly used guides are linear features, that is straight valleys and water courses that apparently mark better fractured zones.

HYDROGEOLOGY

The entire sheet area is underlain by crystalline rocks at shallow depth with a thin cover of Cainozoic sediments.

Cainozoic Sediments

Only one well (4945/12) is definitely known to be in an alluvial aquifer. The nearby well 4945/9 appears from the drillers log to be in slightly weathered basement. Weathered crystalline rocks resemble sands and gravels and are recorded as such by drillers, hence it is possible that a few other wells are in alluvial aquifers. Alluvial deposits associated with present day streams are too thin to contain reliable aquifers. Deeply incised palaeochannels, with little or no surface expression, such as those intersected by 4945/12, have the potential to yield large supplies. Because they are relatively narrow, geophysics would be needed to locate these economically.

Calcrete aquifers are widespread in the adjacent region in Western Australia (Wharton, 1984). No calcrete aquifers are known on the MANN Sheet. At Kuntjanyu outcropping Mangatija Limestone may allow water to infiltrate to underlying aquifers.

Crystalline Rocks

Fractured crystalline rocks and saprolite formed by the weathering of crystalline rocks are the most widespread aquifers on the sheet. Saprolite aquifers form where groundwater can circulate through fissures and react with the rock.

In many cases the strongly weathered zone has low permeability, but the slightly weathered and fractured zone beneath it is an aquifer. This is most likely to occur in areas of structural disturbance where jointing is well-developed.

The Mann Fault is an example of such a zone. While the initial faulting probably took place at depths too great for fractures to develop subsequent erosion and release of stress within the mylonites in the fault zone has caused intense fissuring. A zone along the trace of the fault is weathered to a depth of 40 to 60 m. This weathered zone is usually, but not always, permeable.

Both yields and salinity are best in the northern part of the area around the Mann and Tomkinson Ranges.

The better yields are probably a result of better fracturing in this area.

The lower salinities are probably due to a combination of the following factors:

- 1. Better permeability, as noted above
- 2. Greater topographic relief generating higher hydraulic gradients and more efficient flushing.
- 3. Run off from the ranges is available for recharge.

Fewer wells have been drilled south of the ranges, but the success rate is much lower.

This is partly because the cover of wind blown sand has obscured lineaments and partly because the area is less deformed and fewer aquifers have developed.

The influence of rock type was studied by using the geological map to infer the geological unit penetrated.

Results are shown in Table 5.

TABLE 5 Comparison of well-yields with rock types

Rock type	No of Wells	Wells > 0.5 L/s	Wells > 1 L/s
Acid granulite Emm	27	12 (44%)	6 (22%)
Intermediate granulite Emm	6	1 (17%)	1 (17%)
Basic granulite Emm	3	. 1	0
Giles Complex Gabbr	07	3	1
G01566			

вβд		(43%)	(14%)
Kulgeran Granite Eγ ₅	5	0	0
Wartaru Gneiss Bmw	5	1	0
TOTAL	54	18 (33%)	9 (17%)

The acid granulites are the most widespread rocks in the area and most wells have been drilled in them. Too few wells have been drilled in other rock types to allow reliable comparisons. Wharton (1984) considered that in the adjacent region in WA Giles Complex mafic and ultramafic rocks, where weathered, were better aquifers than granites, gneisses and granulites.

Elsewhere in WA highly weathered ultramafics have yielded large supplies (Whincup & Barnett, 1988).

This contrasts with experience on other continents that basic rocks such as gabbro fracture poorly (UNESCO, 1984 p47) and weather to clayey material of low permeability (UNESCO, 1984 p43).

Giles Complex basic and ultrabasic rocks on the MANN sheet have a slightly better success rate, but the difference would not be statistically significant. It is likely that these rocks have not been drilled in the most favourable areas where deep weathering may occur.

The Kulgeran Granites appear to be worse aquifers than the granulites.

On the evidence in Table 5 the Wataru Gneiss is a poor aquifer on the MANN Sheet. On the EVERARD sheet of 16 wells in the Wartaru Gneiss (40%) yielded more than 0.5 L/s and 4 (27%) more than 1 L/s (Read, 1990). Fifteen wells on the BIRKSGATE sheet, immediately south of the MANN sheet wells all yielded less than 0.5 L/s (Read, 1989).

The above results are attributed to two factors:

a. The Wataru Gneiss occurs in less tectonically disturbed areas and is therefore less fractured.

b. The Wataru Gneiss weathers to material of low permeability.

An attempt was made to study the relationship between the depth of saprolite and well yields.

This was found to be very difficult because of wildly inconsistent reporting between different drillers and geologists.

Many wells have been logged off site. The logs are a description of cuttings without reference to drilling conditions, such as caving and penetration rate, and are difficult to interpret.

Further not all wells pass through the sequence of clay, weathered but recognizable crystalline rock, fresh rock. In some instances silcrete bands have been recorded deep in the weathering profile. In other cases corestones of fresh rock may occur between bands of clay developed along joints.

A plot of well-yield against saprolite depth is shown in Figure 4.

The large number of wells with thin saprolite and low yields is due, in part to many of these wells being abandoned at shallow depth.

14 wells are reported as having over 25m of saprolite. One of these may in fact be in alluvium.

A breakdown of well yields is shown below in Table 6.

Depth of Saprolite		0-10	10-20		30-40	40-50 5	50-60
No of W	No of Wells		10	9	6	5	3
Wells tap fractured aquifers					, ,		
	≥0.5 L/s ≥1 L/s ≥2 L/s	3(20%) 2(13%) 1	2(20%) 0 0	3(33%) 2(22%) 0	1(13%) 0 0	0 0 0	0 0 0
Wells ta Saprolite aquifers	pping)			х х			
	≥0.5 L/s ≥1 L/s ≥2 L/s	0 0 0	1(10%) 0 0	3(33%) 3(33%) 2(22%)	3(50%) 2(33%) 0	3(60%) 2(40%) 2(40%)	2(67%) 2(67%) 1(33%)
Ali aquifers	≥0.5 L/s ≥1 L/s ≥2 L/s	3(20%) 2(13%) 1(6%)	3(30%) 0 0	6(67%) 5(55%) 2(22%)	4(67%) 2(33%) 0	3(60%) 2(40%) 2(40%)	2(67%) 2(67%) 1(33%)

TABLE 61 Well yields and saprolite thickness

.

TABLE 7 ANALYSES

Unit	No.	year	Ca mg/L	Mg mg/L	. Na mg∕L	K mg/L	HCO3 mg/L	SO4 mg/L	Cl mg/L	F mg/L	NO3 mg/L	Cond. ECU	Hq	TDS mg/L
4744	/ 3	1977	116	80	285	47	364	249	480	-	35	•	8.1	1471
4744	/ 3	1978	121	85	285	60	364	254	516	•	90	2653	7.9	1590
4744	/ 7	1970	311	395	1300	135	345	1067	2619	0.8	143	9880	7.4	6565
4744	/ 2	1957	99	67	273	100	69	208	480				•	1270
4745	/ 4	1957	26	94	97	•	121	63	144	•	•	•	•	656
4745	/ 4	1955	20	46	77	•	44	73	134	•			••••	428
4745	/32	1970	52	95	121	6	470	130	180		20	1460		834
4745	/33	1970	48	52	71	5	380	45	95	•	•	1000	•	501
4745	/34	1975	23	132	160	5	441	85	302	0.5	30 ·	•	8.5	974
4745	/34	1980	19	104	145	4	476	68	288	0.3	,35	•	8.2	843
4745	/34	1970	16	136	154	6	425	95	340		20	1750	•	977
4745	/35	1970	14	98	110	5	480	55	155	•	20	1220	•	•
4745	/35	1970	21	.89	90	4	475	45	130	•	•	1200	•	614
4745	/36	1970	19	95	108	6	475	55	165	•		1210	•	
4745	/37	1970	25	82	128	16	515	45	150	•	20	1300		721
4745	/38	1988	43	71	106	3	418	52	160	0.7	31	1200	7.6	741
4745	/38	1970	36	78	98	5	445	50	150	•		1210	7.5	637
4745	/75	1977	303	190	1322	26	339	1123	2170	•	22	8159	8	5322
4745	/78	1978	47	61	79	4	36	53	90	0.1	40	•	8	540
4745	/78	1978	47	51	79	4	356	53	90	0.7	40	926	8	540
4745	/83	1982	48	65	73	4	360	68	110	0.7	38	980	7.7	610
4745	/86	1982	76	45	64	5	336	52	94	1.1	81	•	•	•
4745	/92	1988	22	106	114	3	446	56	205	0.3	33	1390	7.7	813
4745	/93	1988	39	39	116	9	283	83	120	0.5	15	945	7.7	615
4845	/ 2 / 3	1976	19	37	511	41 5	170	251	636 130	•	25 190	3000	8.9	1637
4845			· 79	71	62	2 2	279 344	41 126	130	1.4	47	1316	7.9	715
4944	/ 5	1976	68	45	145				94	1.4 1.7	32	1309	7.6	750
4944	/ 8	1976	41	32	117	4	386	29				967	7.7	541
4944	/ 9	1982	44	23	232	19	305	98	260	1.3	20	1420	8	830
4945	/ 1	1975	30	29	146	9	381	31	72	3.1	21	963	8.7	561
4945	/ 3	1966	53	51	82	•	304	77	132	•	•		7	699
4945	/ 4	1970	60	36	122	20	260	55	210	•	30	1290	•	663
4945	/ 6	1978	71	81	324	16	675	150	352	1.9	30	2307	8.2	1358
4945	/ 7	1978	79	49	95	12	416	45	157	•	4	1172	8	646
4945	/ 9	1982	69	43	150	14	•	64	200	1.4	52	1260	7.7	770

ц

N

Clearly wells penetrating over 25m of saprolite have better than usual yields on the MANN sheet.

A greater depth of saprolite does not appear to improve the chance of finding useful supplies in the underlying little weathered rock. This agrees with findings on the ALBERGA and EVERARD sheets (Read, 1989a and 1990).

On the ALBERGA sheet wells in thick saprolite were found to be more likely to have moderate yields, but less likely to have yields over 2 L/s.

Figure 5 shows the distribution of standing water levels on the MANN sheet.

These figures are mostly based on information supplied by drillers, and are likely to contain errors since water levels are usually measured immediately after drilling when large residual drawdowns may be present.

WATER QUALITY

There is no significant grazing of stock in the area and water is generally required for human consumption.

As in most of the arid inland parts of Australia salinity and nitrates are common problems. Crystalline rock areas such as the MANN sheet commonly also have excessive fluorides.

Water analyses are shown in Table 6.

Nitrate contents are generally lower than in other parts of the Pitjantjatjara Lands (Read, 1990) (Fig. 6). Only three analyses show more than 45 mg/L nitrate. Significantly two of these are the southern half of the sheet, the highest value being the most saline water on the sheet.

Fluorides are also relatively low compared to other parts of the Pitjantjara Lands, no analyses to date having exceeded 1.5 mg/L.

Figure 7 shows present knowledge of salinity distribution on the MANN Sheet.

HYDROCHEMISTRY

Chemical analyses are shown in Table 7.

Fingerprint diagrams were generated for all analyses. A selection of these is shown in Figure 8.

Low salinity waters around the ranges have similar chemistry. Bicarbonate is the dominant anion, followed by chloride and then sulphate.

Magnesium is the dominant anion, closely followed by sodium.

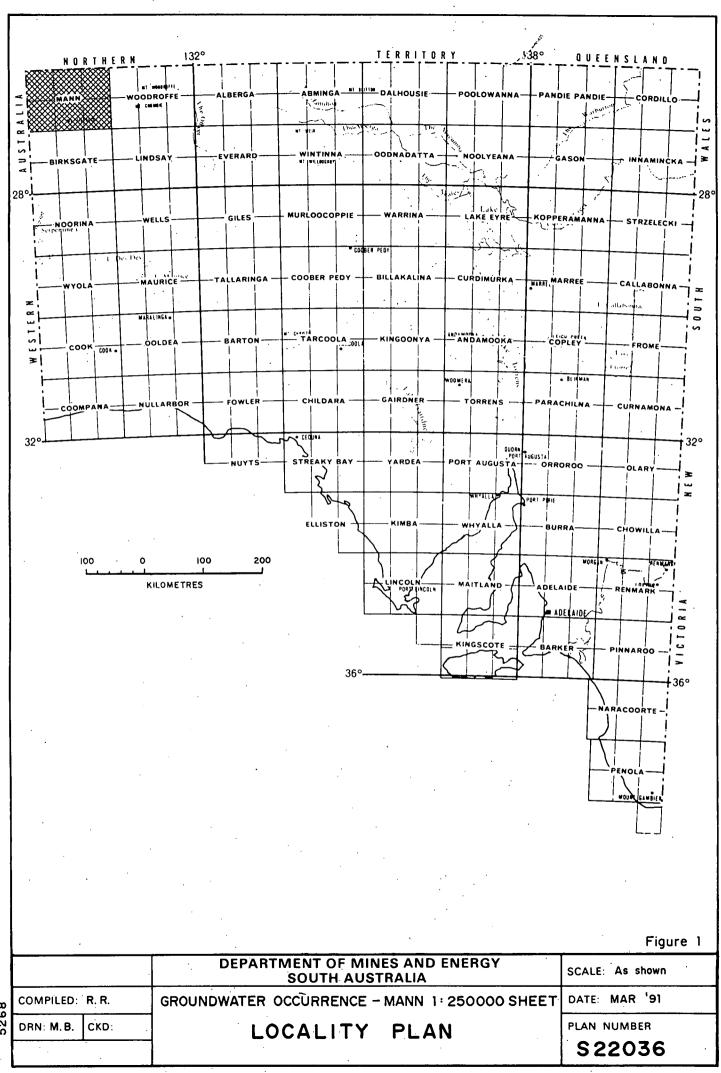
Some wells in and near mafic and ultramafic rocks show higher magnesium relative to calcium (eg 4745/35, 4745/36, 4745/37, 4745/38, 4745/92, Fig. 8).

CONCLUSIONS

- 1. Yields of about 0.5 to 2 L/s of moderate salinity are widely available in the northern part of the MANN sheet.
- 2. Alluvial aquifers in palaeochannels have potential for larger yields but will be difficult to locate and develop.
- 3. In the southern part of the sheet water supplies are more difficult to locate. Use of geophysical methods such as resistivity may be economic.

A BARRISS STA

Da hear


R E READ SENIOR GEOLOGIST

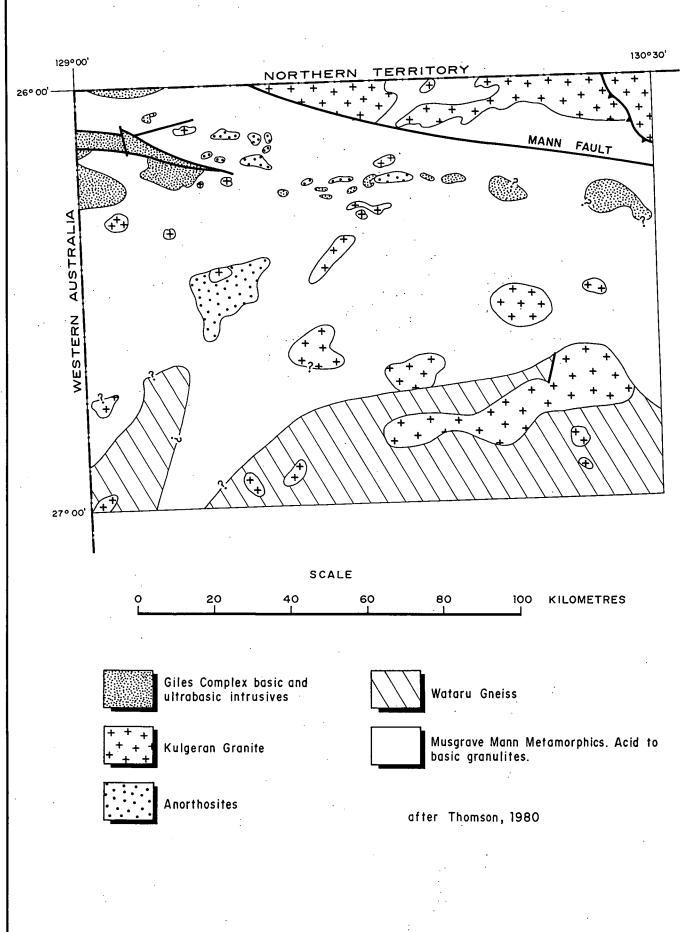
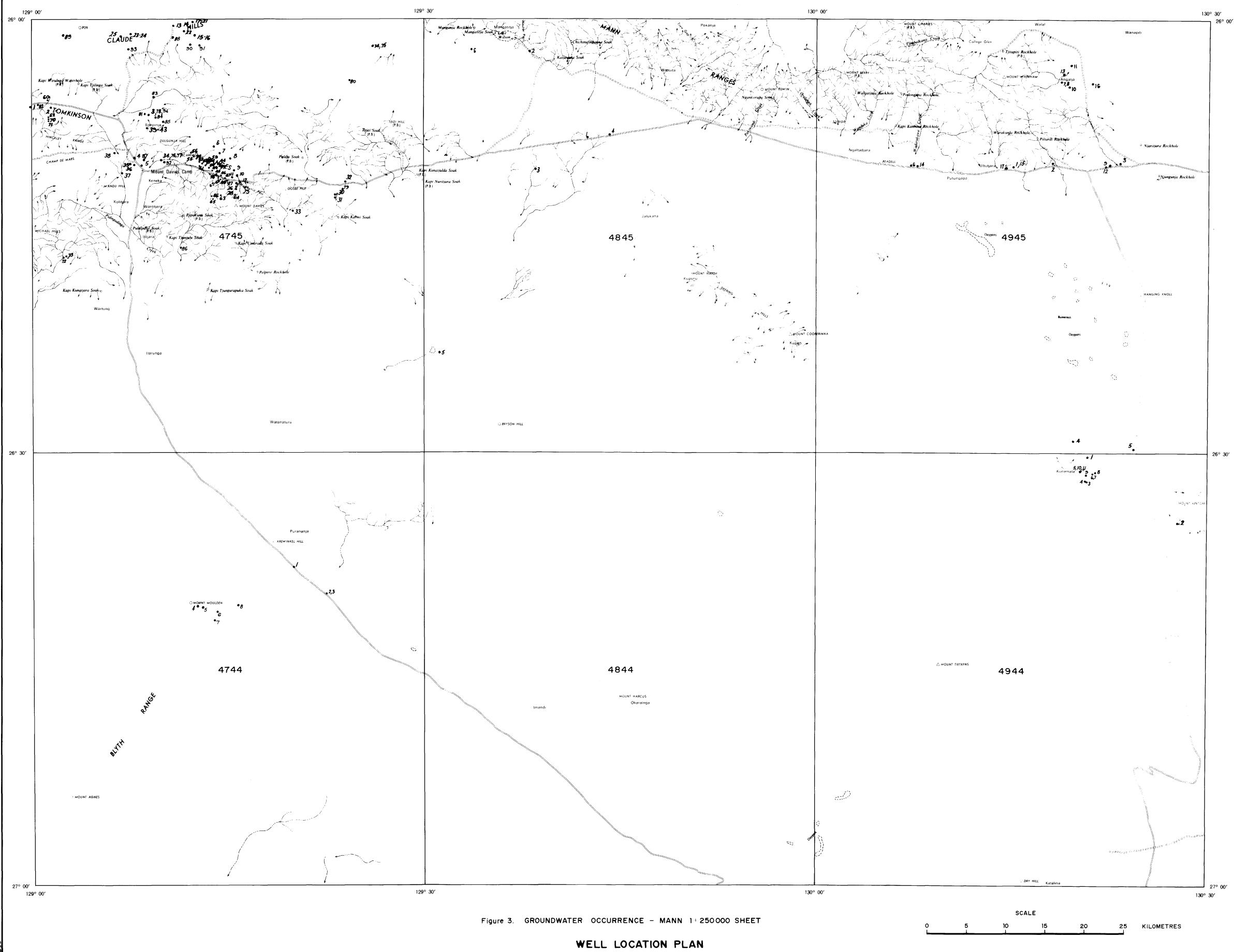
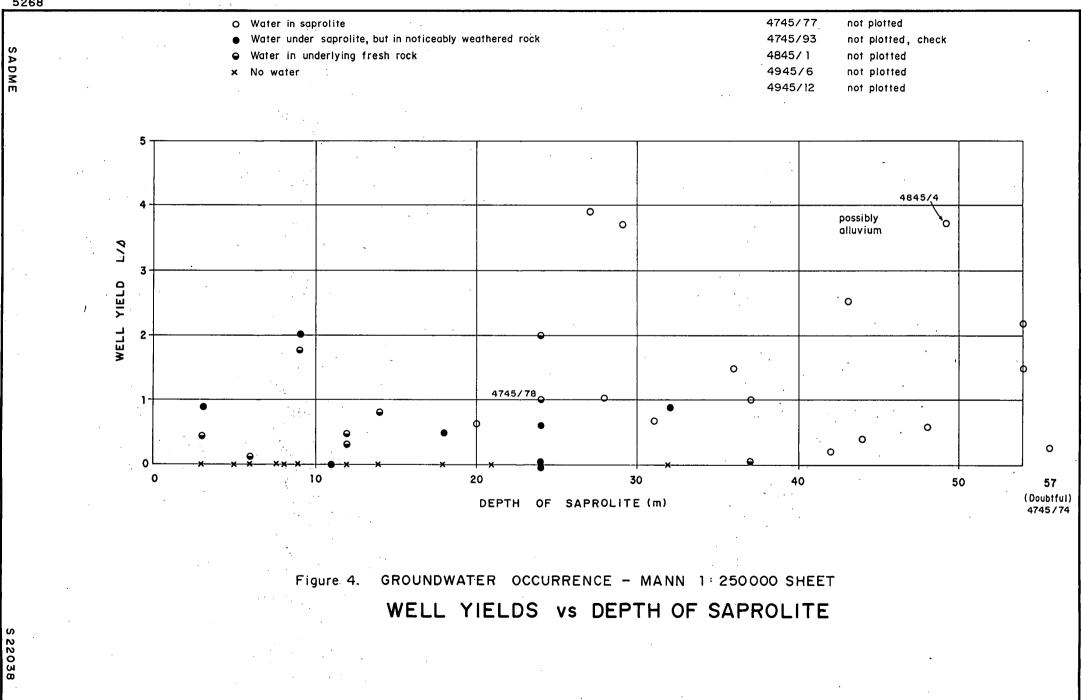
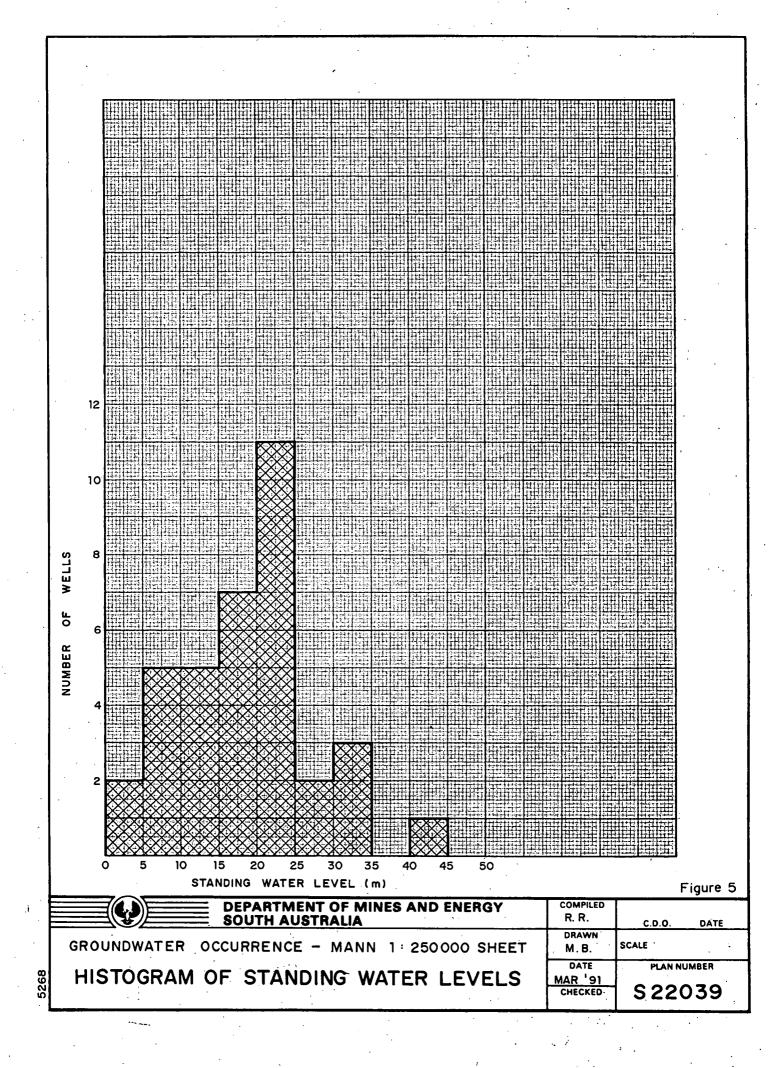
P.S. Tewksbury per Aly P S TEWKSBURY

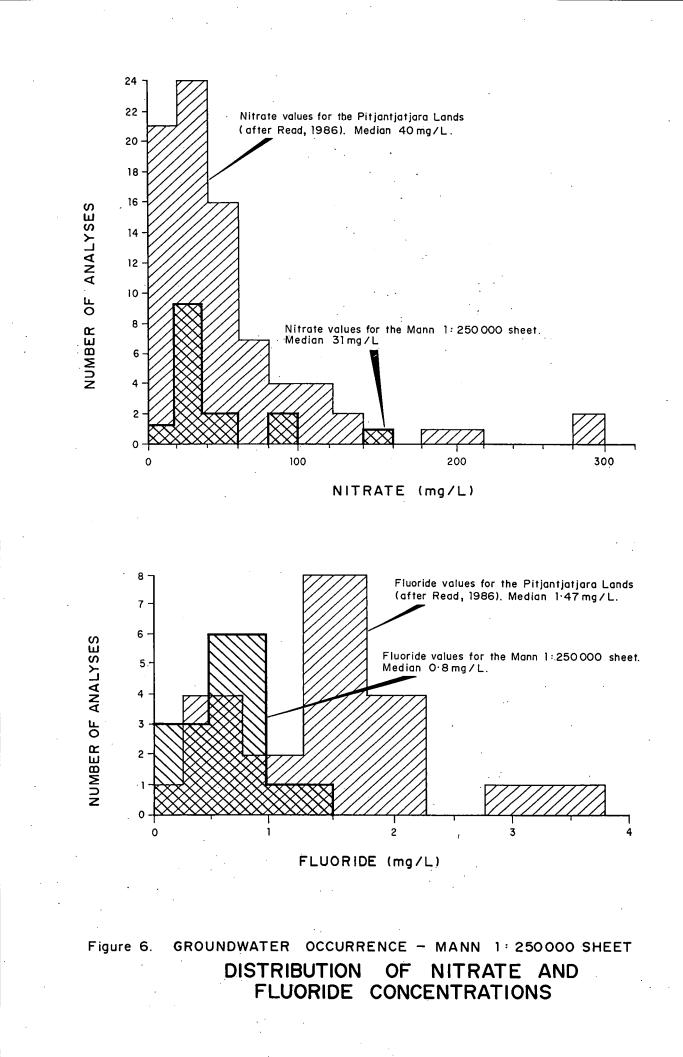
G01566

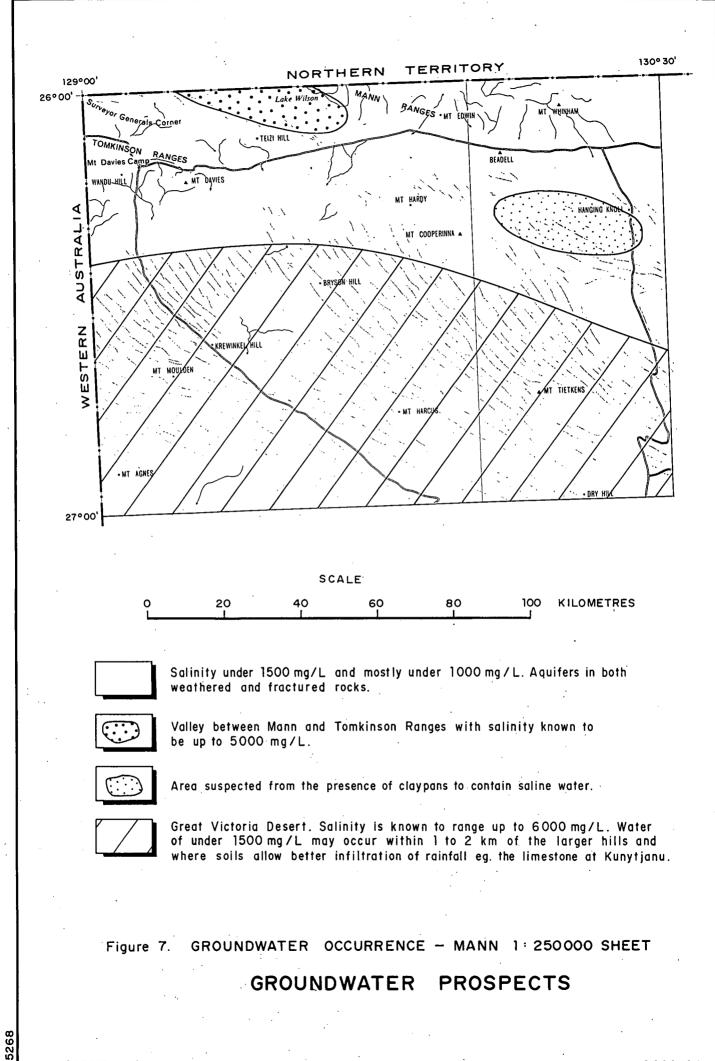
REFERENCES

- Read, R.E., 1989(a). Groundwater occurrence on the ALBERGA sheet. South Aust. Dept. Mines and Energy unpubl. report 89/19.
- Read, R.E., 1989(b). Pitjantjatjara Lands 1988. Drilling. South Aust. Dept. Mines and Energy unpubl. report 89/82.
- Read, R.E., 1990. Groundwater occurrence on the EVERARD sheet. South. Aust. Dept. Mines and Energy unpubl. report 90/53.
- Thomson, B.P., 1962. MANN map sheet, <u>Geological Atlas of South</u> <u>Australia</u> 1: 250 000 series. Geol. Surv. S. Aust.
- UNESCO, 1984. Groundwater in hard rocks. Published by United Nations Educational, Scientific and Cultural Organization, 7 place de Fontenoy, 75700 Paris.
- Wharton, P.H., 1984. Groundwater in the Blackstone region, in West. Aust. Geol. Survey Report No. 12 p 87-91.
- Whincup, P. and Barnett, J.C., 1988. Groundwater prospecting in the arid regions of Western Australia. In Papers of the Second International Conference on Prospecting in Arid Terrain, Perth Western Australia, April 1988. Thomson, B.P. (Compiler), 1980. Geological Map of South
- Australia, 1:1 000 000 scale. Dept. of Mines and Energy, Adelaide.

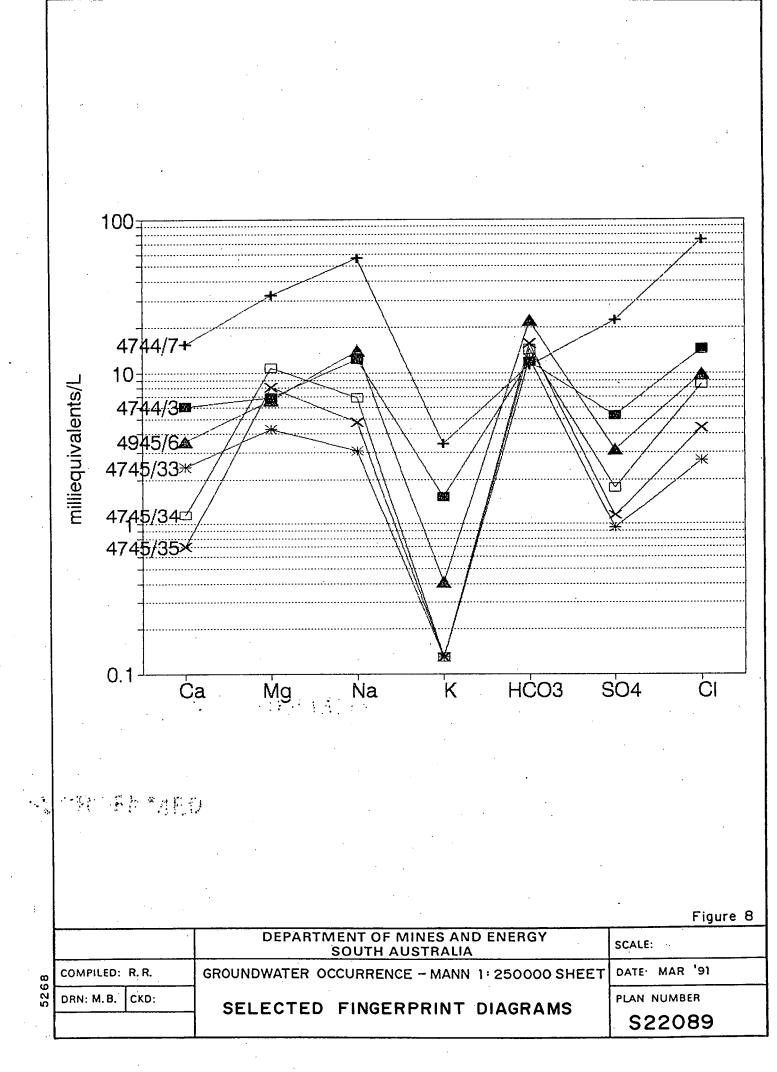
j,


Figure 2. GROUNDWATER OCCURRENCE - MANN 1: 250000 SHEET GEOLOGICAL MAP



SADME


5268

S 22040

SADME

S22041

