
DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT. BK. NO. 90/30

DUNTROON GEOPHYSICAL STUDY

OIL, GAS AND COAL DIVISION

by

BRUNO THOMAS

CONTENTS		PAGE
ABSTRACT		
INTRODUCT	ION	. 3
REGIONAL	SETTING	4
STRATIGRA	РНҮ	5
SEISMOSTR	ATIGRAPHIC PRINCIPLES	7
CHOICE AN	D RELIABILITY OF THE HORIZONS MAPPED	9
Base	ment	9
Top	? Jurassic - Neocomian	10
Top	Duntroon Group	10
Top	Bight Group	11
VELOCITY :	FUNCTION AND TIME\DEPTH CONVERSION	11
SEISMOSTR	ATIGRAPHIC ANALYSIS	12
Base	ment	12
? Ju	rassic - Neocomian sequence	12
Dunt	roon Group	14
Bigh	t Group	16
Tert	iary	19
TECTONIC :	HISTORY	20
Rift	Phase	20
Post	Rift Phase	23
Mass	sliding and shale diapiric movements	25
a)	Structures related to mass sliding and shale	25
	diapiric movements	
b)	Origin of the overpressures	27
c)	Age of the mass sliding and shale diapiric	29
	movements	
PETROLEUM	ASPECTS	30
Oute	r growth fault belt	31
a)	Platypus 1 well	31
	structure	31
	marurity	31
b)	Duntroon 1 well	32
	structure	32
	maturity	33
· c)	Conclusion	34

	PAGE
Central basement ridge	35
a) Echidna well	35
structure	35
maturity	36
Inner grabenal zone, and other play concepts	37
source rocks	37
structures	38
conclusion	39
REFERENCES	40

TABLE

1 Formation tops

<u>FIGURES</u>				
Fig.	No. Title	DWG No.		
1	Reconstruction of the Australian and Antarctic	S21616		
•	plates at rifting and after rifting stages			
2	Time/depth curve	S21617		
3	Seismic line 83-70	90-369		
4	Seismic line 84-16	90-370		
5	Stratigraphic correlation chart	S21701		
6	Seismic line 84-17	90-371		
7	Distribution of the Late Cretaceous sediments	90-372		
8	Seismic line 83-64	90-373		
9	Seismic line 84-27	90-192		
10	Seismic line 83-18	90-191		
11	Main structural elements	90-374		
12	Main structural elements related to mass	90-375		
	sliding and shale movements.			
13	Platypus 1 well site	90-376		
14	Duntroon 1 well site	90-377		
15	Principal types of hydrocarbons traps	S21618		
	associated with growth faults			
16	Echidna 1 well site	90-378		

ENC	CLOSURE	<u>s</u> :	DWG NO.
1:	Airb	orne and marine contours of magnetic total	
	inte	nsity map.	90-387
2	(a):	Depth to top basement (east)	89-305
	(b):	Depth to top basement (west)	89-304
3	(a):	Depth to top ? Jurassic - Neocomian sequence	
		(east)	89-303
	(b):	Depth to top ? Jurassic - Neocomian sequence	
		(west)	89-302
4	(a):	? Jurassic - Neocomian sequence Isopach Map	
		(east)	89-313
	(b):	? Jurassic - Neocomian sequence Isopach Map	
		(west)	89-312
5	(a):	Depth to top Duntroon Group (east)	89-301
	(b):	Depth to top Duntroon Group (west)	89-300
6	(a):	Duntroon Group (Isopach Map) (east)	89-311
	(b):	Duntroon Group (Isopach Map) (west)	89-310
7	(a):	Depth to top Bight group (east)	89-299
	(b):	Depth to top Bight group (west)	89-298
8	(a):	Bight Group Isopach Map (east)	89-309
	(b):	Bight Group Isopach Map (west)	89-308
9	(a):	Tertiary Isopach Map (east)	89-307
	(b):	Tertiary Isopach Map (west)	89-306
10	(a):	Seismic line and shot point location map	
		(east)	90-383
	(b):	Seismic line and shot point location map	
		(west)	90-384

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT. BK. NO. 90/30 DME. NO. 129/88 DISK NO. F01650

DUNTROON GEOPHYSICAL STUDY

ABSTRACT

The Duntroon Basin is located in the centre of the Southern Rift System between the Bight and the Otway Basins, west and southwest of Kangaroo Island. It is limited to the north by the Proterozoic Gawler Craton.

The formation of the basin is related to the period of continental stretching preceding the opening of the Southern Ocean, commencing in the mid-Jurassic.

Structurally the Duntroon Basin is divided into an inner half grabenal zone bounded to the north by west-northwest trending faults, and an outer zone directly connected to the continental slope. A discontinuous basement ridge, corresponding to the crests of enéchelon tilted basement blocks, forms the boundary between the outer and inner zones. The inner zone comprises a series of offset half grabens which widen toward the southeast.

A basal syn-rift sequence is confined to the half grabenal depocentres. undrilled to date, its age is assumed to be ? Jurassic - Neocomian. It is overlain by an Early Cretaceous sequence of fluviatile and A Late Cretaceous lacustrine shales. sequence of continental to paralic deposits rest with slight unconformity or apparent conformity on the underlying Lower Cretaceous. A Tertiary sequence of open marine carbonates and sands overlays the Cretaceous series with erosional contact. To the north, the Tertiary units rest directly on the shallow basement platform rocks of the Gawler Craton.

The Duntroon Basin is characterized by two distinct tectonic regimes: a multi-stage rifting phase related to the separation of the Australian and Antarctic plates in Early Cretaceous, and a period of fracturing and deformation in Late Cretaceous, associated with shale mass movements and basement uplift. This second tectonic phase developed above a décollement level at the base of the Duntroon Group shales (Early Cretaceous). It began in mid-Cretaceous and lasted until the Tertiary.

Of the three wells drilled in the Duntroon Basin, two tested the outer zone (Platypus 1 (TD 3368 m); Duntroon 1 (TD 3515 m)), and indicate that the section is immature down to 3000 m (in the Lower Cretaceous), and marginally mature down to TD. the generally considered that Lower Cretaceous contains possible source rocks and the Upper Cretaceous potential reservoirs. The Echidna 1 well was located on the basement ridge separating the outer from the inner zone, on the crest of a shale diapiric feature. The penetrated section is reduced and the Late Cretaceous sequence is missing. However, the maturation profile at this site indicates that the oil window is entirely contained in the Lower Cretaceous, and that hydrocarbon migration occurred in the section above the window. The inner zone is to date untested but extrapolation with existing wells and consideration of the tectonic and sedimentary history of this indicate significant potential source rocks in the ? Jurassic - Lower Cretaceous, and reservoirs and traps in the uppermost Lower Cretaceous and Cretaceous.

INTRODUCTION

Of Australia's passive continental margins, the Southern Rift System is by far the longest formed by a single episode (or multiple related episodes) of extension. The rift complex includes a number of sedimentary basins and sub-basins, nominally from West to East: the Bremer, Bight, Duntroon, Otway and Sorell Basins.

The Duntroon Basin occupies the area south of the Eyre Peninsula, and west of Kangaroo Island. The basin received particular attention from explorationists (Cockshell, 1990), as it contains a thick faulted and deformed sedimentary section (up to 10 000 m thick), and lies for most part in water depths less than 200 m. The current interpretation is based on the 1983 and 1984 Getty Oil seismic surveys. This seismic grid covers an area of approximately 6000 square kilometres, and varies from detailed to semi detailed. The seismic surveys are tied with stratigraphic data at the three wells drilled in the Duntroon Basin (Platypus 1, Echidna 1, and Duntroon 1). The seismic interpretation was carried out to analyse the structural configuration and evolution of the area, in particular to clarify the roles played by the rift phases and the post rift movements in the deformation of the sedimentary cover. The study also examine the influence of these tectonic movements on the distribution of the seismostratigraphic sequences, and their relation with the hydrocarbon potential of the area.

Clarification of the tectonic history of the margin has been gradually forthcoming, over the last two decades, largely from the results of regional studies (Boeuf and Doust, 1975; Deighton et al., 1976; Fraser and Tilbury, 1979; Bein and Taylor, 1981; Cande and Mutter, 1982; Mutter et al., 1985; Nelson et al., 1986; Veevers, 1986; 1987; Hegarty et al., 1988; Powell et al., 1988; Willcox et al., 1988). The emergence of new models of

extension of the lithosphere derived from the work of Wernicke and Burchfiel (1982), has considerably renewed interest in the tectonics of the Australian southern margin. Etheridge et al. (1984; 1985), Willcox et al. (1988), Willcox and Stagg (1990), Willcox (1990), used models of simple shear lithospheric extension, interpreting the tectonic structures of the southern margins in terms of transfer and detachment faults. Over the last two years a comprehensive synthesis of the geological evolution of the Duntroon - Bight Basins was undertaken by South Australian Department of Mines and Energy and the Bureau of Minearal Resources, and is published in Stagg et al., (1990).

REGIONAL SETTING

The Duntroon Basin is located on the southern margin of the Proterozoic Gawler Craton (Enclosure 1). Sediments of the Delamerian fold belt flank the craton to the east and south, and the Mesozoic breakup of the Gondwanaland may have followed ancient zones of weakness inherited from the formation of the geosyncline. Smith and Kamerling (1969) proposed that the Cygnet-Snelling fault extends to the west of Kangaroo Island to form the northern boundary of the Duntroon Basin. This fault separates the northerly Gawler Craton from the Cambrian Kanmantoo Group to the south (Thompson, 1969).

Many geodynamic models have been proposed to explain the structure and history of the southern margin of Australia. The early models generally assumed a Paleocene age for the initiation of oceanic opening, and require an important strike slip movement in the Late Jurassic and Cretaceous between the Australian and Antarctic plates (900 Km according to Harrington et al., 1973). The application of dextral (Harrington et al., 1973) or sinistral (Middleton, in Forbes et al., 1984) shear couple along the continental plates boundary resulted in the

formation of pull-apart basins (including the Duntroon Basin) on the southern margins of Australia.

Re-dating of the first sea floor spreading magnetic anomaly from (about 55 Ma) (Weissel and Hayes, 1972) to A34 (about 95 Ma) (Cande and Mutter, 1982) and the subsequent re-estimation of the age of continental breakup from Paleocene to mid-Cretaceous $(96\pm4 \text{ Ma})$ by Veevers (1988) has introduced new constraints on the motion of the continents. Reconstructions of the East Gondwanaland (Veevers, 1987; Powell et al., 1988; Veevers and Eittreim, 1988) suggest that extension between Australia and was oriented north-northeast - south-southwest Antarctica during the Late Jurassic-Early Cretaceous continental rift phase (Fig. 1). More recently Willcox and Stagg, (1990) divided the rifting into a pre-Late Jurassic to Neocomian phase and an Early Cretaceous phase with respectively northwest and northnortheast directions of extension.

STRATIGRAPHY

The stratigraphy of the Duntroon Basin is estimated with reference to the three wells drilled in the area. Table 1 and Fig. 5 synthetise the depths and thicknesses of the formations penetrated, and their stratigraphy. A comprehensive description of the lithological and geochemical characteristics of these units is contained in Hill, (1989). The following descriptions of the units is summerised from Forbes et al., (1984); Templeton and Peattie, (1986); Hill, (1989).

The oldest penetrated sediments belong to the Early Cretaceous Duntroon Group. It comprises the Echidna, Neptune, Borda and Ceduna Formations (Fig. 5). Sediments of the Duntroon Group were penetrated in the three wells of the Duntroon Basin (Platypus 1, Echidna 1, Duntroon 1). They consist mainly of fluviatile and lacustrine shales deposits. The shales can exhibit rates of

sedimentation as high as 40 cm/1000 years (Forbes et al., 1984). Thick rapidly accumulating lacustrine deposits are typical of rift sedimentary successions (Rosendahl, 1987) where they can constitute the bulk of continental rift infill (e.g. Schull 1984; Wu and Liang, 1984; Netto, 1984; Demaison, 1980; Powell, 1986).

The Bight Group (Fig. 5) comprises the Platypus Formation (upper delta plain sandstones, siltstones and coals), Wombat Sandstone member (?shoreface sands), Wigunda Formation (prodelta shales and siltstones) and the Potoroo Formation (?lower delta plain stacked distributary bar sands and shales). It is analogous with the fluvio-deltaic Sherbrook Group of the Otway Basin. The Late Cretaceous Bight Group usually disconformably overlies the Lower Cretaceous but with apparent conformity in some areas.

The three wells drilled in the Duntroon Basin encountered a very similar Tertiary section; 1219 m thick at Echidna 1, 1487 m at Platypus 1, and 1662 m at Duntroon 1. The Tertiary is represented by the sediments of the Eucla Group (comprising the Wilson Bluff Limestone; and the Nullarbor Formation; Table 1, Fig. 5) and the Pidinga Formation which consists of coarse to very coarse moderately sorted unconsolidated quartz-rich sands. The environment of deposition has been interpreted as paralic (Forbes et al., (1984).

The Wilson Bluff Limestone consists of soft marl with limestone beds grading to argillaceous lime siltstones and dolomitic limestones. The overlying Nullarbor Limestone forms the major part of the Tertiary section. It is composed of a series of dolomitic limestones and grainstones containing skeletal fragments of bryozoa and echinoderm, and dark cherts. The environment of deposition is shallow marine - wave dominated.

SEISMOSTRATIGRAPHIC PRINCIPLES

The seismic sequence analysis is based on the recognition and identification of regional unconformities used for stratigraphic correlations. The division of the sedimentary pile in units separated by unconformities may vary according to different authors.

The terminology used by Exxon (Vail et al., 1977) defines the seismic sequence boundaries as unconformities related to relative fall of sea level resulting in an abrupt basinward shift in the site of sediment accumulation. The unconformities are characterised by sub-aerial exposure of the underlying sequence and two types are recognised. Type I is associated with sub-aerial erosion with stream rejunevation, onlap of overlying strata, downward shift in coastal onlaps and basinward shift of facies. Type II is marked by sub-aerial exposure and downward shift in coastal onlap landward of the depositional shore line break, but lacks both sub-aerial erosion and basinward shift in facies. A type II boundary is interpreted to form when the rate of subsidence at the depositional shoreline break exceeds the rate of sea level fall.

More recently, Galloway (1989) proposed a division of the sedimentary section of marine basin margins based on the identification of flooding surfaces. These boundaries separate genetic sequences and record the depositional hiatus occurring over much of the transgressed upper slope and continental shelf during the maximum marine flooding.

There has been active debate on the relation between the relative sea level variations and basin subsidence (or uplift), sedimentation rates, and eustatic sea level changes. The world wide synchroneity of the Exxon's variation in coastal onlaps (usually referred as sea level changes) has been questioned, and

although sequence boundaries are commonly accepted as chronostratigraphic markers within a basin, they may be localised results of the combined effects of subsidence, sedimentation rate and eustatic variation (Hubbard 1985, 1988).

Despite controversy over thė choice of the dividing seismostratigraphic boundaries and their possible synchroneity and significance to eustatic sea level, seismic unconformities are widely used for regional correlations within a basin. However, seismostratigraphic analysis is greatly hampered when sediments are deposited in continental area deprived of direct connection with marine continental а margin. unconformities in a continental basin reflect tectonic style, changes in sedimentation rates or in source of clastic deposits, rather than sea level changes. Such tectonically induced unconformities would not have chronostratigraphic significance.

Seismic facies analysis aims to provide geological models for depositional environments from seismic data. Analysis of the geometry and terminations of the reflections provides the basis for defining seismic sequences, however several other features seismic data are also considered: configuration, continuity, amplitude, frequency, velocity, the external shape of the sequence, and the areal distribution of the facies. These features can be used to indicate stratigraphic information, such as bedding pattern, bed spacing thickness and continuity, fluid content, depositional process, gross depositional environment, and ultimately lithology type.

Stratigraphic interpretation of seismic data remains ambiguous owing primarily to the multiple geological configurations that may produce similar seismic images and the relatively weak documentation relating seismic facies and sedimentary facies.

CHOICE AND RELIABILITY OF THE HORIZONS MAPPED

Open marine conditions in the Duntroon Basin are not recorded before the Tertiary, with most of the Mesozoic sediments being deposited in continental or paralic environments. This severely limits seismic sequence and seismic facies investigations, as continental sediments usually present a limited range of seismic features and have poor reflection continuity. Unconformities within the Mesozoic series result primarily from tectonic effects combined with changes in sedimentation rates, sources and distribution.

Four main horizons were chosen for seismo-sequence mapping, on the basis of their structural and stratigraphic significance.

- the top of the basement
- the top of a basal syn-rift unit (?Jurassic Neocomian sequence)
- the top of the Duntroon Group (near top Early Cretaceous sequence).
- the top of the Bight Group (top Late Cretaceous sequence).

The seafloor was also mapped to provide the upper surface for the Tertiary sequence.

Basement

The top of the basement is usually well defined in the inner parts of the basin, and in the shallow basement area corresponding to the Gawler Craton. Oceanward, the basement is down-faulted to the continental slope, and the association of greater sediment thickness and deterioration in seismic quality decrease the level of confidence in mapping in the southern outer zone of the basin.

Top ? Jurassic - Neocomian

The top? Jurassic - Neocomian horizon is discontinuous and has been recognised in three isolated depocentres within the inner parts of the Duntroon Basin. The horizon has yet to be intersected by drilling, and the correlations between the Jurassic depocentres are based on similarity of seismic character and structural relationship with the overlying sequences and the basement surface.

Top Duntroon Group

This horizon is correlated with the top of the Duntroon Group at the Platypus 1 and Duntroon 1 wells, and marks approximately the breakup between the Australian and Antarctic plates. tentative breakup unconformity existence of a illustrated in the north west termination of the inner zone of the Duntroon Basin. The determination of a breakup unconformity in the rest of the basin is somewhat vague and complicated by the superposition of an intense fracturing pattern related to mass sliding of the Duntroon Group shales on a décollement surface and associated anticlinal features. The breakup of the Antarctic and Australian plates is commonly considered to have occurred between 110 and 90 Ma (Cande and Mutter, 1982). Veevers (1988) refined these values and estimated the breakup age at 96 <u>+</u> 4 Ma.

This horizon also marks the onset of the mass shale movements on a ? Neocomian décollement surface, and associated faulting. This intense fracturing decreases the data quality in the anticlinal crestal area, and lowers the level of confidence in mapping the horizon across the anticlines. Correlation of this horizon across many faults, coupled with possible large variations in thickness and depositional environments in the Cretaceous series, is fair to poor.

Locally, at the crest of some anticlinal features this horizon coincides with the base of the Tertiary, where the Upper Cretaceous is missing.

Top Bight Group

In contrast with the top Duntroon Group horizon, this horizon offers very good reliability, generally coinciding with the base of the Tertiary. The base of the Tertiary is an erosional surface corresponding to an abrupt decrease in tectonic activity. This prominent horizon was considered by early workers as the breakup unconformity, and although the age of the separation of the continents has been revised, no satisfactory explanation has been found to account for the vigour of the event at the base of the Tertiary. This period marks also a major change in depositional environment from continental in the Cretaceous to open marine in the Tertiary.

This horizon coincides locally with the base of the Tertiary carbonates where the thin sandstones of the Pidinga Formation were eroded or not deposited.

VELOCITY FUNCTION AND TIME/DEPTH CONVERSION

Two way time values for each horizon derived from interpreted seismic sections were converted to depths using a single velocity function. This function (Fig. 2) was derived from well velocity data (Platypus 1, Echidna 1 and Duntroon 1) for the uppermost 2400 m of the sedimentary section, and averaged VRMS velocities derived from processing of the 1984 seismic data for the deeper section.

The velocity data from the wells are very similar, indicating that depth conversion for at least the upper part of the section should be reasonably accurate. However reliability is likely to decrease in the lower part of the section. The use of a single function over such a vast area covering a variety of geological terrains will result in an averaging effect masking possible lateral changes. This limits the confidence of the absolute depths obtained, but the relative values should reliably portray the configuration of the basin.

SEISMOSTRATIGRAPHIC SEQUENCES

Basement

Smith and Kamerling (1969) proposed that the basement west of Kangaroo Island comprises two types of rocks of different velocity characteristics. They interpreted this difference as representing the boundary between the Proterozoic Gawler Craton to the north and the Cambrian Kanmantoo Group to the south. This boundary would also correspond to the northern bounding faults of the Duntroon Basin which separate a sparsely faulted highly diffracting basement in the north, from a rifted basement to the south, which frequently displays apparently organised low frequency reflections. The Mesozoic Duntroon Basin is thus inferred to be underlain by Cambrian metasediments of the Kanmantoo Group, (Smith and Kamerling, 1969; Forbes et al., 1984).

? Jurassic - Neocomian sequence

The deposition of the first recognised sedimentary sequence appears to have been structurally controlled by northwest and southeast faults isolating deposition in three half grabenal depocentres separated by the crests of faulted basement blocks (Enclosures 3 and 4). The earliest sediments occupy wedge shaped

bodies and blanket minor basement reliefs within the depocentres (Fig. 3).

The sequence is characterized by high amplitude reflections of moderate continuity presenting a constant direction of downlaps towards the south. Occasional channels and thick alluvial fans are apparent along the fault scarps (Fig. 3&4). They thin basinward to form sub-parallel piles of more continuous reflections. This suggest that clastic materials were supplied by erosion of the basement highs, and transported on a relatively short distance within the basin. At the time of deposition, the depocentres were relatively isolated enclosed, however, the unit is remarkably consistent in seismic character from one depocentre to another, suggesting that conditions of deposition were similar throughout the area. Although no syn-rift wedge was detected in the outer zone of the basin, the decreasing quality of the seismic in this area and the limited coverage do not preclude the presence of such a unit. zone.

By comparison with the top of a similar sequence in the Eyre Sub-basin sampled by the Jerboa 1 well (Bein and Taylor, 1981), the basal syn-rift sequence of the Duntroon Basin may consist of non-marine fluvial to lacustrine sediments. Powis and Partridge (Callovian to (1980)proposed a Jurassic age lowermost Berriasian) for the sedimentary section penetrated immediately before encountering the Archaean basement. The re-dating of the samples by Morgan (1990) indicates that the deposits could be of Neocomian age. In any case, only the very top of the syn-rift sequence was penetrated at the Jerboa 1 site, as the well is located on the apex of a tilted basement block. The deeper levels remain undated, hence the timing of onset of rifting remains conjectural.

Additional support for a Jurassic age of at least part of this unit comes from the occurrence of Jurassic sedimentation in the Polda Trough. Three wells penetrated a Jurassic section: Gemini 1, Mercury 1, and Columbia 1. The section comprises non-marine fluviatile sands, commonly coarse to very coarse, poorly consolidated, often poorly sorted and feldspathic, with occasional siltstones, clays and coals interbeds. The sequence is Oxfordian-Kimmeridgian in age. The presence of Bajocian tholeitic basalt on Kangaroo Island (Milnes et al., 1982) also supports a Jurassic age for the commencement of the rifting. Furthermore, it suggests that the early syn-rift unit in the Duntroon may include volcanoclastics.

A Jurassic age for the earliest syn-rift deposits may be a conservative estimate, and older sediments could be present as suggested by Forbes et al. (1984). The reworking of Triassic palynomorphs within the Cretaceous series intersected in Potoroo 1 suggests local Triassic sediments.

Conversely, the seismic characteristics of the sequence indicate apparent similarities of depositional environment with the proximal alluvial fan deposits of the Neocomian Pretty Hill Sandstone of the Otway Basin (Gravestock et al., 1986). This suggests, along with the recent re-dating of Morgan (1990), that the basal syn-rift sequence of the Duntroon Basin may be partly or entirely Neocomian. Within the exploration framework both hypotheses lack tangible evidence, but they could have far reaching implications for the generation of hydrocarbons.

Duntroon Group

In contrast with the restricted area of deposition of the ? Jurassic - Neocomian sequence in basement depressions, the Early Cretaceous sediments were deposited over the whole Duntroon Basin. Although considered a syn-rift sequence, it should be

noted that the Lower Cretaceous does not have the common characteristics of a syn-extensional unit (wedge shaped body and overall fan configuration). The sequence shows an increase in reflection continuity, and in further contrast with the underlying sequence, is the absence of major fan development along the basin margins. This can be explained by a balance between the sedimentation and tectonic subsidence rates, eliminating the basin edges effect, during the Early Cretaceous.

The Early Cretaceous sequence overlies the basement ridges separating the Jurassic depocentres and covers the ? Jurassic -Neocomian strata with only a slight unconformity. The sequence appears as a relatively monotonous pile of moderately continuous reflections of medium frequency. These fluviatile sediments, display a general lack of definition in terms of sedimentation. The absence of a regional unconformity within the section prevents the division of the sequence into sub units. Facies analysis is considerably hampered by the heavy faulting and deformation by shale mass movement which occurred in the Late Cretaceous. It is important to note that although minor movements may have occurred in the Early Cretaceous, the deposition of the Early Cretaceous sequence generally predates faulting and anticlinal growth. Their facies distribution was originally governed solely by depositional environment independent of subsequent tectonics. However, Late Cretaceous tectonism redistributed the Early Cretaceous shales variations in thickness of the Early Cretaceous sequence result mainly from variation in subsidence rates within the basin and blanketing the palaeorelief inherited from the ? Jurassic -Neocomian topography, and later shale movements.

A decrease in Early Cretaceous rock competence with depth is indicated by the flattening with depth of the Late Cretaceous faults, and their sole-ing out near the base of the Lower Cretaceous. However, the transition is gradual and without any

apparent sharp contrast in acoustic impedance. Chaotic configuration in the core of the anticlines is interpreted as a loss of bedding organization in the shaly material. Additional loss of seismic information could be due to decreased dip of the fault planes with depth and the consequent increase in dip of the bedding surfaces.

Overall, the lack of variation in seismic character of the sequence is consistent with the rapidly accumulating shaly and silty lacustrine deposits of the Duntroon Group. differences in subsidence rates could have induced variations in depositional environments and sedimentation rates causing the undercompaction of the lacustrine deposits. Further south and west, towards the continental slope, it is probable that the lacustrine-fluvial conditions of deposition graded to more transitional environments, in response to marine ingressions. The top Duntroon Group horizon marks the possible breakup of the Australian and Antarctic plates and indicates a change from lacustrine-fluvial facies. in predominantly the Cretaceous, to regressive deltaic sedimentation in the Late Cretaceous.

Bight Group

The Late Cretaceous sequence, as defined from the base Platypus Formation to the top Potoroo Formation, thickens westward (from 757 m in the Duntroon 1 well location to 1657 m in the Platypus 1 well). This variation of thickness reflects the westward increase in total overall fault throw in the outer growth fault belt.

The Platypus Formation corresponds to a regressive cycle (Hill, 1989), and displays occasional seaward downlaps. The formation is locally overlain with a slight angular unconformity by a transgressive cycle which can be correlated (at the Duntroon 1

well) with the Wombat Member (clean sands) and the Wigunda (prodelta siltstones, shales and Formation carbonaceous mudstones). However the boundary between the Platypus Formation and the overlying units does not appear to correlate landward with a clear erosional surface. The Wigunda Formation is in turn conformably overlain by the Potoroo Formation. The Wigunda/ Potoroo interface is clearly diachronous (Hill, 1989), and gets younger from the west (Bight Basin) to the east (Duntroon Basin). The contact between the Potoroo Formation and the overlying Tertiary section corresponds to a prominent erosional event, followed by the first truly marine incursion in the Duntroon Basin.

Forbes et al. (1984) suggested a correlation of the top Platypus Formation with a mid-Cenomanian global fall in sea level (of Vail et al. 1977), and a rise in sea level corresponding to the deposition of the Wigunda Formation ending with the regressive cycle of the Potoroo Formation sandstones. The major unconformity at the base of the Tertiary could correspond to the end of the megacycle ZC-4 of Haq et al. (1987) (eustatic curve, published in Bally (1987).

The depositional history of the Late Cretaceous Bight Group is governed by several factors:

- mass movements of the underlying shales of the Duntroon Group.
- related gravity movements due to the presence at the base of the Early Cretaceous sequence of a ductile zone with local topographic gradient towards the newly created Southern Ocean.
- regional uplift of the basement in the central ridge area and to a lesser extend in the outer zone of the basin.

These factors controlled the formation of three major structures: the Echidna-Koala and Cockatoo anticlinal features in the inner part of the basin, and a growth fault belt in the outer part of the Basin (Figs. 7,9 and 12). The onset of this tectonic phase is documented by the geometrical relationship between the Early and Late Cretaceous reflectors (Fig. 6).

The growth of the diapiric-cored anticlines and the variations in uplift along their axis determined the location of the depocentres and probably commanded the distribution of the depositional facies of the Upper Cretaceous.

The central part of the Echidna-Koala structure corresponds to a zone of total erosion or non-deposition of the Late Cretaceous sequence (Fig.16). This area seems to have acted as an effective sedimentary barrier, during at least part of the Late Cretaceous (Platypus Formation), between the flanking northern and southern synclinal depocentres. Sediments entered the southern syncline on both sides of the structures and from the eastward end of the cross section the anticlinal feature asymmetrical with a southern flank subsiding significantly more rapidly than the northern one (Figs. 3,8). Progressive growth of the anticlinal structure in Late Cretaceous generated intraformational unconformities within the thick stacks of prograding beds in the southern syncline (Fig.8), whilst the northern syncline accommodated a thinner pile of parallel strata conformably overlying the Duntroon Group. As the anticlinal axis of the Echidna-Koala structure plunges to the east, the progressively "overridden" eastward by is structure Cretaceous sediments (owing perhaps to high deltaic sedimentary input from the north). In this area, crestal faults delineate an apical graben where the Upper Cretaceous extensional preserved.

Facies distributions and variations in thicknesses of the Late Cretaceous formations also occur in the outer zone of the Duntroon Basin as a result of sliding and rotation along listric faults. This is illustrated by the difference in thickness of the Platypus Formation from 49 m at the Duntroon well on the top of a rotated Early Cretaceous block, to 402 m at the Platypus 1 well site (Figs. 13,14).

Tertiary

The Tertiary can be divided into two main seismiostratigraphic sequences on the basis of differences in acoustic character. The lower sequence consists of a relatively thin (0 - 200 m) section resting unconformably on the Upper Cretaceous (at Platypus 1 and Duntroon 1 wells) or on the Lower Cretaceous (Echidna 1). It correlates directly with the Pidinga Formation.

The basal unconformity seems related to an abrupt reduction in the rate of growth or up-lift in the anticlinal area and rotation along the growth faults in the outer zone. The measured angle of unconformity between the horizontal Tertiary and the underlying rotated Early Cretaceous reaches 20 degrees at Echidna 1. Cande and Mutter (1982) suggested that the Early Tertiary unconformity might also be related to a sea level change.

The base of the second sequence is marked by a prominent horizon over the entire Duntroon Basin. This event corresponds to the first open marine ingression into the Duntroon Basin. The sequence contains a complex architecture of stacked progrades. It correlates with the Wilson Bluff and Nullarbor Limestone and conformably overlies the lower sequence (Pidinga Formation). Typically the isopachs of the Tertiary (enclosure 9 a&b) show a gentle increase in thickness towards the shelf edge, characteristic of the built up of prograding wedges.

The first fully marine incursion in the Duntroon Basin occurred 45 Ma after the start of oceanic spreading between Australia and Antarctica. The absence of a decisive marine transgression during the Cretaceous could be explained by high continental sedimentation input limiting the marine incursions, as Deighton et al. (1976) suggested in the Otway Basin. The marine transgression would appear consistent with the decrease in the rate of detrital supply recorded in the Tertiary as well as the slowing in fault and diapiric growth. However vertical movements, although with limited amplitudes, persisted along the main growth faults through the Tertiary (Fig. 8). The shift from detrital to carbonate sedimentation and the increasing marine influence in the Tertiary is also interpreted to reflect the widening gap between the Australian and Antarctic plates, and the expanding southern Ocean (Deighton et al., 1976; Willcox et al., 1988).

TECTONIC HISTORY

Rift Phase

The overall aspect of the Duntroon Basin is an extensional continental margin bounded to the north by west-northwest to almost east-west faults. On cross section the basin presents an inner half grabenal zone separated by a basement high from an outer zone connected to the continental slope. This high is discontinuous and represents by the crests of en échelon tilted basement blocks forming west-northwest to northeast trending ridges. These ridges plunge to the west and southwest. The inner zone widens to the east and comprises three main offset depocentres (enclosure 2 a&b; Fig. 11). The seismic grid does not cover the outer part of the basement ridge separating the basin in its southeastern sector, but an outer faulted zone is also very likely to be present in that area.

The northern bounding faults separate a crystalline basement associated with the Proterozoic Gawler Craton from the Mesozoic-Cenozoic to the south with throws of up to 8000 m. Throws decrease to the east and, as the faults progressively coalesce and die out in that direction, the basement forms a gently rising ramp towards Kangaroo Island. No major bounding fracture affecting the basement was detected on east-west seismic sections, indicating that there is continuity of the Cambrian Kanmantoo Group, from Kangaroo Island to beneath the basement of the Duntroon Basin. However, in the eastern end of the basin, west of Kangaroo Island, the west-northwest - east-southeast trending faults appear to curve to a more north-northwest south-southeast direction, and merge into a complex fractured interpreted accommodation or transfer zone as an (Cockshell, 1990).

The rifting history of the Duntroon Basin can be divided into two distinct episodes of extension and collapse, accompanied by two different sedimentary cycles. The first cycle is a typical syn-rift infill by sediments of estimated? Jurassic - Neocomian age of half grabenal depocentres located in the inner part of the basin (Fig. 3,4,8,9). These depocentres are delineated by faults oriented along the west-northwest and east-southeast directions (enclosure 3 a&b). The two sets of faults are contemporaneous and appear to have an horizontal component of extension.

The basement faults within the inner basin are sealed at the top of the ? Jurassic - Neocomian syn-rift sequence, whereas the north bounding faults of the basin remained active and extended during the second cycle of extension beginning in the Early Cretaceous. This new episode of extension terminated whith the commencement of spreading between the continental plates at 96 + 4 Ma (Veevers, 1988). During this second rifting pulse the

? Jurassic - Neocomian depocentres were down-faulted and became part of an expanded Early Cretaceous Basin. The extension of the ? Jurassic - Neocomian faults to the east resulted in the broadening of the inner zone in the eastern sector of the basin.

The second rifting cycle is accompanied by sagging of the southern edge of the basin towards the continental slope, allowing the thick accumulations of Early Cretaceous sediments.

A general review of the structural history of the Southern Rift System (Stagg et al., 1990; Willcox, 1990; Willcox and Stagg, 1990) also points strongly to the existence of two distinct episodes of extension preceding the final breakup in Cenomanian The first extensional event is inferred to be pre-Valanginian, and lasted till the top of the Neocomian. The Neocomian surface (top of the ? Jurassic - Neocomian sequence) is interpreted by the above authors as a potential breakup unconformity, marking the possible first injection of oceanic material in the thinned continental crust in the area of the The second extensional phase, postmagnetic quiet zone. Neocomian to Cenomanian, terminated when massive oceanic spreading occurred, allowing the recording of the fist magnetic anomalies used from the determination of the age of continental breakup. The two extensional cycles affected the entire Southern Rift System, and are interpreted to have developed in almost orthogonal stress fields. The early Jurassic - Neocomian extensional faults trending northeast, whilst the Cretaceous faults were oriented west-northwest. However in the Duntroon Basin, the ? Jurassic - Neocomian depocentres are delineated by west-northwest and northeast faults and the two sets appear contemporaneous and present an horizontal component of extension.

The onset of rifting is not precisely dated, no well having penetrated the entire syn-rift sequence, but a Mid-Jurassic age of about 160 Ma is usually applied in the computation of the geohistory plots (Mutter et al., 1985; Hegarty et al., 1988). These models do not appear to reflect the two extensional pulses recorded in the sedimentary infill of the Duntroon Basin.

The mid-Cretaceous surface marks the possible breakup of the Australian and Antarctic plates, and the onset of oceanic spreading at 94 ± 4 Ma (Veevers, 1988).

In the Duntroon Basin, the continental breakup usually did not

Post Rift Phase

take the form of an unconformity, but is typically related to an abrupt slowing in the rate of subsidence (Mutter et al., 1985; Hegarty et al., 1988). This drop is interpreted to represent the passage from fault controlled extensional subsidence to slower fault controlled thermal subsidence. However, subsidence continued after that time along the north bounding faults. The most dramatic effect of these post rift movements is the uplift, in the Late Cretaceous, of the central basement ridge and the inner of the basin, separating the outer zones particularly in the Echidna area. Seismic interpretation suggests that the ridge was already structurally high in ?Jurassic - Neocomian time by the significant thinning of the corresponding series on the basement. Reactivation and rotation on the northern bounding fault of the basin in Late Cretaceous resulted in the increased tilting of the basement in the inner zone, and the consequent uplift of the basement ridge. However the uplift of the ridge was not accompanied by a reactivation of its southern bounding fault sealed in Early Cretaceous. The ridge seems to have acted as a hinge zone between a fast subsiding inner zone and a slow subsiding or relatively uplifted outer zone. The overall result of this large scale tilt is a

general shift in depocentres from the outer zone (Early Cretaceous) to the inner zone (Late Cretaceous) where the increased tilt of the basement allowed accumulation of thick Late Cretaceous deposits. The outer zone received reduced thicknesses of Upper Cretaceous whilst the uplifted central ridge became locally a zone of non deposition or erosion during the Late Cretaceous (Fig. 7) as in the Echidna area (Fig. 16). Seismic interpretation does not provide conclusive evidence to assess the respective roles played by erosion or non deposition. The strong angular unconformity at the base of the Tertiary in the Echidna 1 well suggest both an important uplift and erosion, but part of it can be attributed to independent rotational associated with mass sliding of the Cretaceous sedimentary cover (see below). A significant part of the missing Late Cretaceous section between the inner zone to the ridge can be attributed to paleotopographic thinning. Forbes et al. (1984) attempted to estimate the thickness of the missing Late Cretaceous section, assuming continuous deposition in Late Cretaceous paleotopographic thinning of 60% from Platypus 1 to Echidna 1.

Their estimate was approximately 885 m of uplift and erosion at Echidna 1 in Late Cretaceous, whilst similar calculation from Duntroon 1 to Echidna 1 would also indicate about 1000 m of uplift.

The origin of these movements remain unexplained, since by Late Cretaceous time the continental plates were separated by several hundreds of kilometres, and extensional management would have been restricted to the oceanic spreading axis. Alternatively the apparent Late Cretaceous extensional movements can be interpreted as a response to continuing high sedimentation rates rather than lithospheric stretching. Similar interpretations have been made in the Gippsland Basin (Hegarty et al., 1986; Rahmanian et al. in press) in the Otway (Williamson et al. 1987) and in other parts of the world such as the North Sea (Sclater

and Christie, 1980). In this hypothesis, the sedimentary overloading of the inner zone in Late Cretaceous would have induced the overall tilt of the basin and the uplift of the central ridge and, to a lesser extent, of the outer zone.

Mass sliding and shale diapiric movements

a) <u>Structures related to mass sliding and shale diapiric</u> movements

The prominent features of the inner part of the Duntroon Basin are complex domal structures with marked anticlinal dips (Figs. 4,8,9,12). Two sets of faults (one hading seaward the other hading landward) typically cause collapse of the structural crest. The doming affects both the Early and Late Cretaceous sequences, and the crestal faults occasionally extend through the Tertiary levels, rarely reaching the sea floor. These features trend west-northwest, parallel to the basin axis, varying from 80 km long and 40 km wide for the Koala-Echidna structure, to about 30 km by 12 km for the Cockatoo structure (Fig. 12). The outer zone is occupied by a growth fault belt developed in the Late Cretaceous, and sealed at the base Tertiary level. These structures present striking similarity in aspect with salt and shale diapiric features observed in other part of the world (Larberg, (1983); Skeryane and Kolodny, (1983); Whittle and Short, (1978), in: Lowell, (1985); Bol and Van Hoorn, (1978), in: Lowell (1985). These structures in the Duntroon Basin are interpreted as resulting from mobilization of incompetent overpressured shales of the Duntroon Group. The Koala structure is developed above a deep basement faulted and tilted block. The fault is sealed by ? Jurassic -Neocomian deposits, and does not show any sign of reactivation in Late Cretaceous time. However, the origin of the structure could be partly explained by an hinge effect of the basement block during the general tilting of the Basin in

Cretaceous. In this hypothesis, the arched and fractured Mesozoic cover would have passively deformed. Variations in competency could explain the difference in response to the arching: the Late Cretaceous sequence being competently arched and fractured, the faults dying in the ductile shales of the Duntroon Group Early Cretaceous wilst the ? Jurassic - Neocomian incompetently warped. The flanking sequence was anticlinal features affecting the Cretaceous series are observed to flatten with depth and die out in a décollement level located immediately at the base of the Early Cretaceous sequence, and the ? Jurassic -Neocomian sequence in unaffected by faulting. Although this hypothesis may partially explain the nucleation of the Echidna -Koala structure, it should be noted that the Cockatoo structure developed independently of any basement block (Fig. 12), and that its origin cannot be attributed to a passive hinge effect. It should be also noted that these structures are not related to a Late Cretaceous reactivation of a deep seated basement fault, and therefore cannot be directly interpreted as the result of transpressional strike-slip movements (flower structures).

Southward dipping growth faults characterised the outer parts of the Duntroon Basin. These faults also flatten with depth and die out in a décollement level located in the deepest part of the Early Cretaceous series. This décollement level is interpreted to be continuous from the inner to the outer zones of the basin. The downward movement along the concave faults causing rotation of the down-thrown Early Cretaceous layers and rollover structures.

The Echidna-Koala structure comprises a "symmetrical" compartment containing both south and north dipping faults (respectively synthetic and antithetic faults), and an "asymmetrical" compartment containing only synthetic faults (down throw to the south) (Fig. 8,10,12). The flanking faults

strike essentially parallel to the anticline axis and (Enclosure 5 a&b). Crestal faults, with either southward or northward dip, are usually steeper and tend to be less continuous. They can present very large vertical displacements. Similar compartments can be delineated in the Cockatoo-outer growth zone structure. The change from asymmetrical to symmetrical seems to occur (transfer abruptly, although no fractures somewhat accommodation zone) are observable on the seismic sections (Fig. 12). Compartments with only south dipping faults are observed in the outer parts of the basin where the ductile sliding level at the base of the Duntroon offers a topographic gradient toward the continental slope. Conversely, in the inner zone, being isolated from the continental slope by a basement high, the décollement level does not present a topographic gradient toward the oceanic basin and the anticlinal features are affected by both sets of faults. The limits of the compartments are usually found to be controlled by changes in trend and arrangement of the underlying basement ridges separating the inner to outer zones (Fig. 11 and 12). As these en échelon ridges plunge and disappear to the southwest, the décollement level progressively dips to the south, whilst the north dipping faults, present in more inner parts of the basin, disappear.

b) Origin of the overpressures

Salt or shale tectonics are a common occurrence in sedimentary basins, when loading of relatively dense clastic deposits over highly ductile substrata initiates the flow of mobile material away from the depocentres. The best studied examples are found in the oil producing provinces of the Gulf of Mexico and the Niger Delta (Bruce, 1983; Evamy et al., 1978,; Larberg, 1983; Skeryane and Kolodny, 1983; Weber, 1971). The structures typical of shale or salt tectonics are diapirs or growth ridges, growth faults and withdrawal synclines.

The causes of formation pressures greater than hydrostatic influencing the mobilization and migration of incompetent material has been attributed to load pressure, due to rapid increase in overburden, without fluid escape. In general the resulting shale tectonics has been closely associated with deltaic regressive cycles (Bol and Van Hoorn, 1978; Bruce, 1983; Evamy et al., 1978; Larberg, 1983; Weber, 1971).

Hydrocarbon phase change can also induce higher than normal formation pressures. On the North West Shelf of Australia, all the oil and gas fields are located within or immediately adjacent to overpressured shales (Horstman, 1988). A study of 90 wells in that area has shown that overpressuring can be related to hydrocarbon generation when the first occurrence overpressuring is below the top of the oil window and coincident with the top of the source rock, or when the overpressuring coincides with the top of the oil window (Horstman, 1988). When the first occurrence of overpressure is above the oil window in a thermally immature section, the abnormal pressures are more likely to be undercompaction of the shales, caused by inability of contained water to escape because shale permeability seals formed early. In 31 wells, the top of the overpressured section was found in an interval with thermal maturity greater than Ro 0.5%, and it is suggested that the overpressuring is caused by hydrocarbon generation (Horstman, 1988). Unravelling the relation between the Early Cretaceous overpressured levels of the Duntroon Basin and the top of the oil window would certainly provide an interesting approach to the assessment of the exploration risks in the Duntroon Basin.

c) Age of the mass sliding and shale diapiric movements

The shale diapirism divides the sedimentary infill of the Duntroon Basin into pre-, syn- and post-withdrawal series. Withdrawal of the ductile shales towards diapiric ridges causes the subsidence of withdrawal synclines, which accommodate the sedimentary input. Pre-withdrawal strata are arched and affected by crestal faulting. Syn-withdrawal series are characterized by expansion along the withdrawal fault flanking the dome, thinning towards the raising diapiric ridge, and an overall configuration. Thus the first interval which expands towards the growth faults documents initial lateral withdrawal initiation of the diapiric growth.

The pre-withdrawal series include the ? Jurassic - Neocomian and Early Cretaceous sequences. As the ductile material is provided by shales of the Duntroon Group located above the décollement level at the base of the sequence, only the upper part of the Lower Cretaceous is competently arched and fractured (fig.9).

Subsidence of the withdrawal synclines, along the flanks of the diapiric anticlines, does not appear to have occurred significantly before the mid-Cretaceous times (Fig.6). The first series to illustrate expansion in the withdrawal syncline belongs to the Late Cretaceous and can be correlated with the Platypus Formation. The onset of anticlinal arching is most clearly outlined in a central zone located along the southern flank of the Echidna-Koala structure, by onlaps of reflections of the Platypus Formation on the Duntroon Group (Figs. 6 and 7).

The Tertiary is clearly post- withdrawal as illustrated by its basal unconformity (Figs. 4, 9, 8).

The initiation of the growth fault belt in the outer zone of the basin is estimated by analogy with the Koala structure at mid-Cretaceous. By this time, the formation of the growth faults would have benefited from a topographic gradient of the ductile substratum (sliding plane) toward the newly created Southern Ocean. However, early syn-deposisional growth within the Duntroon Group is not excluded in that area.

The main impediment to the detailed analysis of the history of growth of the anticlinal features of the Duntroon Basin remains the lack of stratigraphic control. The well spacing in producing oil fields in area of growth faulting and associated rollover anticlines (e.g. in the Niger Delta) can be as close as 500 m. Comparison with the well spacing in the Duntroon Basin illustrates this difficulty.

PETROLEUM ASPECTS

Hydrocarbon potential in the Duntroon Basin is assessed with reference to the three wells drilled in the basin. Drilled samples from the Cretaceous section were picked for geochemical analysis and the results are summarised from AMDEL (1984); Forbes et al., (1984); Templeton and Peattie, (1986), and Hill, (1989).

The evaluation of the petroleum potential of the basin based on existing well data is restrictive due primarily to the particular location of the wells. Of the three wells, two tested the outer growth belt (Duntroon 1 and Platypus 1), with very close results. The third well (Echidna 1) was located along the basement ridge separating the outer zone from the inner part of the basin, on the crest of an anticlinal feature (Echidna - Koala). It penetrated a reduced section and showed a thermal maturity profile which differs greatly from that of the outer growth belt. The inner basin has not been drilled and the

evaluation of its potential derives from extrapolation from the three existing wells and considerations on the tectonic and sedimentary history of this particular area. The Tertiary section lies in inadequate depths for hydrocarbon generation to have occurred, and the lack of effective seal downgrades the trap potential of the sandy units (Hill, 1989).

Outer growth fault zone

a) Platypus 1 well

Structure

The Platypus 1 well was drilled in 1972. It targeted a wide rollover structure defined on Shell 1970 seismic data (Fig. 13), and was plugged and abandoned at TD 3881 m, in shales of the Ceduna Formation. The Platypus structure is located along the major fault limiting the outer growth fault belt from the central basement ridge. The structure originated in response to the sliding and rotation of the Early Cretaceous sediments on the shallow dipping fault plane at the time of deposition of the Platypus Formation (mid-Cretaceous). The rollover provides dip closure to the north at the mid-Cretaceous level (base of the Platypus Formation). Dip closure to the south and laterally, along the rollover axis, appear to be limited. The sedimentary section penetrated contained adequate reservoirs in the Platypus Formation (334 m thick) and the Wombat Sandstone (103 m thick) and seal (Wigunda Formation, 665 m thick).

Maturity

Vitrinite analysis results indicate that the section is immature down to 3047 m, VR < 0.5% (resinite rich). The top of the oil window for resinite poor, woody herbaceous OM (VR = 0.7%) occurs at 3764 m, in the Early Cretaceous Duntroon Group. Potential

yield (S1 + S2) in the shales of the Platypus Formation indicate moderate to good source rock below 3014 m, with the coals exhibiting excellent source potential. The shales of the Duntroon Group rate as good source rocks (TOC > 1.5%), and the hydrogen index values for coals indicate also good source potential. Geochemical analysis did not indicate the migration of hydrocarbons through the section. Van Krevelen plots in conjunction with organic petrological data demonstrate that most of the organic matter in the Cretaceous sediments woody herbaceous), terrigenous origin (type III, considered to be gas prone, although coals of the Platypus and Ceduna Formations have liquid generating capacity with likely products being light paraffinic oil and wet gas.

The absence of hydrocarbon accumulation in Platypus 1 could result from:

- inadequate closure
- insufficient volumes of hydrocarbons generated in the mature parts of the Ceduna Formation and deeper levels of the Duntroon Group.
- restricted vertical migration of the hydrocarbons generated at depth (below 3000 m) due to intraformational seals within the Duntroon Group.

b) Duntroon 1 Well

Structure

The Duntroon well was located on the Numbat prospect, with its primary objective as the Platypus Formation (Fig. 14). The well was plugged and abandoned at 3515 m. The Numbat prospect is interpreted as a mid-Cretaceous structure generated by mass sliding on a ductile shaly substratum. The structure is limited to the south by a growth fault which was active in mid-

Cretaceous time and affected the top of the Ceduna Formation (near top Early Cretaceous). The deposition of the Platypus Formation appears to be controlled by the growth of this fault, whilst sealing of the fault would have occurred during deposition of the Wigunda Formation. Closure along the east-west axis corresponds to simple dipping of the mid-Cretaceous surface, and does not seem fault related.

However, earlier sliding on the basal plane may have occurred during the Early Cretaceous at site of the Numbat prospect, with associated growth faults active during the deposition of the lower Duntroon Group (Neptune and Echidna Formations). If these faults were sealed by shales of the lower Duntroon Group (Fig. 14), migration of hydrocarbons towards shallower levels, in the Upper Cretaceous would be hampered.

The Platypus Formation is relatively thin (49 m between 2541 to 2590 m, (Hill, 1989) due to uplift and subsequent erosion. The deposition of the formation is here interpreted as synchronous of the structuring of the Numbat prospect (Fig. 14). There is no evidence for hydrocarbon migration in the penetrated Cretaceous section.

Maturity

Vitrinite reflectance data indicate that the section is immature to 3000 m, and marginally mature for oil from 3000 to 3515 m (TD) in the Neptune Formation (0.58% to 0.67% VR). The non coaly mudstones and siltstones throughout the entire section have insignificant potential (max potential 3.9 kg/tonne). Coals were found in the Duntroon Group and in the Cenomanian Platypus Formation. The Cenomanian coals are mostly gas prone and show minor potential to source waxy condensate; potentials average 143 kg/tonne. The Aptian-Albian Borda Formation coals are

generally more oil prone, with potential yields averaging 145 kg/tonne.

The absence of hydrocarbon accumulation in Duntroon 1 could be speculatively attributed to:

- lack of significant quantities of coals in the deep levels of the Lower Cretaceous.
- insufficient thermal maturity for generation of hydrocarbon in these levels.
- inadequate vertical migration to the reservoirs of the Upper Cretaceous.

The shaly nature of the Duntroon Group could furthermore present an obstacle to vertical migration of hydrocarbons. Conversely, lateral migration could have occurred within the Early Cretaceous formations, from the outer zone to more inner parts of the Duntroon Basin. This could account for the traces of hydrocarbons which migrated through the Cretaceous section at the Echidna 1 well.

c) Conclusion

Assuming that the maturity profile at the Platypus 1 and Duntroon 1 wells is representative of the outer zone, the main factors affecting the hydrocarbon potential of this area are therefore the immaturity of the section down to depths averaging 3000 m, and the volumetric importance of source rocks in the deepest (unpenetrated) levels of the Duntroon Group.

Structuring is essentially related to growth faulting commencing in the mid-Cretaceous, and if migration along these faults occurred, the Late Cretaceous section contains possible reservoir sands (sands form 45% of the Platypus Formation, 58% of the Potoroo Formation, in the Platypus 1 well). The zone of

maximum oil generation in Platypus 1 was estimated to be at 4420 m by Forbes et al. (1984). The potential of the outer zone relies on important vertical migration of fluids from the deepest parts of the Duntroon Group to fill Late Cretaceous reservoirs. Vertical migration of hydrocarbons from considerable depths (down to 4000 m) over several kilometers (2 to 3 km) have been reported in the Gippsland Basin (Burns et al., 1984; James, 1983; Rahmanian et al., in press).

Syn-depositional faulting in the lower Duntroon Group shales could prevent vertical migration of the hydrocarbons to the Upper Cretaceous reservoirs.

Alternatively, lateral migration of hydrocarbons from the deep mature levels of the outer zone (in the Duntroon Group) to the ridge separating the outer zone from the inner zone could also be considered. Fluorescence in the Early Cretaceous Borda Formation at Echidna 1 (see further) may have originated from the outer zone, and migrated to the Echidna site through lateral pathways within the Lower Cretaceous section.

Central basement high

a) Echidna well

Structure

The Echidna 1 well was drilled in 1972 on a structure defined by Shell lines. As shown in Fig.16, the Echidna well tested a rotated shale mass on the apex of the large basement ridge separating the outer zone from the inner zone. The important rotation of the Early Cretaceous sequence associated with the shale tectonics and the dense faulting decrease the quality of the seismic records and the degree of confidence in the closure of the structure.

The Echidna structure resulted from a combination of:

- the ? Jurassic-Early Cretaceous rift extensional period.
- the Late Cretaceous post rift uplift of the central ridge.
- the mid-Late Cretaceous mass sliding and shale movements.

The sedimentary section is characterized by the absence of the Upper Cretaceous and incomplete preservation of the Duntroon Group, directly below the base Tertiary unconformity.

Maturity

The oil window is relatively narrow (Hill, 1989) and located entirely within the Borda Formation. The top window for resinite-rich (VR = 0.45%) is at 1402 m, for resinite-poor (VR = 0.7%) at 2042 m, and bottom window (VR = 1.35%) at 2316 m. Elemental analysis and organic petrological investigation tend to confirm the woody-herbaceous origin of the organic matter in the Duntroon Group.

Interestingly, production index values (S1/ S2 + S3) in the interval 1310 to 2042 m indicate the migration of hydrocarbons in the section immediately above the oil generation window (for resinite-poor). This suggests that had a valid seal such as the Wigunda Formation been present, hydrocarbons may have been trapped. However the volume of hydrocarbons cannot be estimated. Analysis of the distribution of the Late Cretaceous formations, especially the Wigunda Formation which acts as a seal (Hill, 1989), is essential for assessing the hydrocarbon potential of the central ridge.

Inner half grabenal zone and other play concepts

The maturation profile for the inner half graben is difficult to predict from data from the outer zone, due to a vastly different structural setting. The existence of deep seated tilted basement blocks in the inner zone of the basin precludes a direct extrapolation of the thermal history (paleo- heat flow and temperatures) from the outer zone.

Source rocks

The basal sequence of the basin has not intersected by drilling. If we assume that these sediments are at least partly Jurassic in age, then analogies with the closest time-equivalent deposits of the Polda Basin, some 250 km north of the Duntroon Basin, can be made. Geochemical analysis carried out on samples of the Mercury-1 well (over a depth range of 310 to 810 m) (Mc Kirdy, 1984) indicate that the Jurassic (Polda Formation) has good nonreservoir source potential with a mean TOC value of 2.56%. The Rock-Eval analysis confirms the good source potential with genetic potential (S1 + S2) ranging from 2.97 to 22.42 kg/tonne. However, in the Polda Basin, the three wells drilled to date have not entered the oil window, with vitrinite reflectance values not exceeding 0.38%. Since the ? Jurassic can be buried to depths of 9000 m in the Duntroon Basin, and if the TOC values are similar to those of the Polda Basin, significant volumes of hydrocarbon may have been generated during the Mesozoic and Cenozoic.

The maturation profile for the Early Cretaceous section is also unknown and might differ significantly from its time equivalent in the outer zone, owing in particular to the increased thickness of the Bight Group in the withdrawal synclines. Sediments of the Duntroon Group are deeply buried, especially in the southeast sector of the basin where the added thicknesses of

the Upper Cretaceous and Cenozoic reach up to 3500 to 3800 m, giving a total sediments thickness in excess of 10000 m. Assuming that organic maturity sufficient for hydrocarbon generation is achieved in sediments of the Duntroon Group, as extrapolated in the outer zone, the potential of the inner zone relies also on the ability for hydrocarbons to migrate through the shales of the upper Duntroon Group. An analogous situation occurs in the Campos Basin (offshore Brazil) hydrocarbon accumulations are found in syn-growth faulting deposited turbidites lying above carbonate and salt layers. There, the hydrocarbons were generated by lacustrine shales located below the salt layers, and migrated a relatively long distance through faults and fractures to the turbiditic reservoirs (Moraes, 1989).

Structures

Structures at the Neocomian level are usually related to warping and normal faulting above the apices of deep basement blocks, and are found in the deepest parts of the inner zone.

Structures in the Cretaceous section of the inner zone are related to the development of the anticlinal features. previously discussed, the onset of diapirism is estimated as mid-Cretaceous. As a consequence of the doming-arching of the series, the faulting of the competent part of the Cretaceous sedimentary section occurs along the axis of the anticlinal features. Typically these crestal faults have an average length of 5 km with highly variable vertical throws. The importance of these fractures is twofold. They may have created pathways for the migration of hydrocarbon generated in the Duntroon Group lacustrine deposits, and may have produced the combination of structural/stratigraphic traps and seals within the Cretaceous as indicated in Fig. 15. The presence of Late Cretaceous sediments within the apical graben delineated by the crestal faults is significant when compared to Echidna 1 where the absence of Late Cretaceous reservoir and seal prevented the possible entrapment of migrating hydrocarbons.

Multiple pinchouts within the Upper Cretaceous and the uppermost Lower Cretaceous during the down-warp of the southern withdrawal syncline of the Koala structure produce possible stratigraphic traps on the southern flank of the anticlinal feature (Fig. 6).

Conclusion

In conclusion, the inner zone is characterised by the presence of potential ? Jurassic - Neocomian source rocks, thick lacustrine Early Cretaceous potential sources, and relatively thick Late Cretaceous reservoirs and seals. Late Cretaceous deformation, related to mass sliding and shale movements, resulted in a dense fracturing of the Upper Cretaceous. This faulting could create structural/stratigraphic traps, although the high density od fault may downgrade the hydrocarbon potential of the crestal portion of the anticlinal structures. Additional stratigraphic traps are possible on the flanks of the anticline features.

The maturation profile of the inner zone is likely to differ from the outer zone, owing particularly to Late Cretaceous postrift movements which resulted in increased subsidence in the inner zone and relative uplift of the outer zone.

REFERENCES

- Bally, A.W., 1983. (Ed.) Seismic expression of structural styles, AAPG Studies in Geology, 15(2).
- Bein, J., Taylor, M.L., 1981. The Eyre sub-basin: recent exploration results. *APEA Journal*, 21(1): 91-98.
- Boeuf, M.G., Doust, H., 1975. Structure and development of the Southern margin if Australia. *APEA Journal*, 15(1): 33-43.
- Bol, A.J., Van Hoorn, B., 1978. Structural styles in Western Sabah offshore. Geological Society of Malaysia, 2nd Petroleum Seminar, Kuala Lumpur. In: Lowell, J.D., (Ed.), Structural style in petroleum geology. OGCI Publications, Tulsa.
- Bruce, C. H., 1983. Shale tectonics, Texas coastal area growth faults. *In*: Bally, A.W., (ed.) Seismic expression of structural styles. *AAPG Studies in Geology*, 15(2).
- Burns, B.J., James, A.T., Emmett, J.K., 1984. The use of gas isotopes in determining the source of some Gippsland Basin oils. *APEA Journal*, 24(1): 217-221.
- Cande, S.C., Mutter, J.C., 1982. A revised identification of the oldest sea-floor spreading anomalies between Australia and Antarctica. Earth and Planetary Science Letters, 58: 151-160.
- Cockshell, C.D., 1990. A seismic study of the Duntroon Basin.

 South Australian Department of Mines and Energy Report
 Book, 90/28.

- Cross, T.A., 1988. Seismic stratigraphy. Annual Review of Earth and Planetary Sciences, 16: 319-354.
- Deighton, I., Falvey, D.A., Taylor, D.J., 1976. Depositional environments and geotectonic framework: Southern Australian continental margin. *APEA Journal*, 16(1): 25-36.
- Demaison, D.J., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, 64: 1179-1209.
- Etheridge, M.A., Falvey, D.A., Lockwood, K.L., Stuart-Smith, P.G., Scherl, S., 1984. Basin forming structures and their relevance to hydrocarbon exploration in the Bass Basin, Southeastern Australia. Bureau of Mineral resources, Geology and Geophysics, Australia. BMR Journal of Australian Geology and Geophysics, 9: 197-206.
- Etheridge, M.A., Branson, J.C., Stuart-Smith, P.G., 1985.

 Extensional basin forming structures in Bass Strait and their importance for hydrocarbon exploration. *APEA Journal*, 25(1): 344-361.
- Evamy, D.D., Haremboare, J., Kamerling, P., Knaap, W.A., Molloy, F.A., Rowlands, P.H., 1978. Hydrocarbons habitat of Tertiary Niger Delta. AAPG Bulletin, 62: 1-39.
- Forbes, A., Martin, M.J., Tadiar, E., 1984. Permit EPP-21,
 Duntroon embayment offshore South Australia, Exploration
 report 1984. South Australia. Department of Mines and
 Energy. Open File Envelope 6215 (unpublished).
- Fraser, A.R., Tilbury, L.A., 1979. Structure and stratigraphy of the Ceduna Terrace region. Great Australian Bight. APEA Journal, 19(1): 53-65.

- Galloway, W.E., 1989. Genetic stratigraphic sequences in basin analysis: architecture and genesis of flooding-surfaces bounded depositional units. AAPG Bulletin, 73(2): 125-142.
- Gibbs, A.D., 1983. Balanced cross-section construction from seismic sections in area of extensional tectonics. *Journal of Structural Geology*, 5(2): 153-160.
- Gibbs, A.D., 1984. Structural evolution of extensional basin margins. Geological Society of London. Journal 141: 609-620.
- Gravestock, D.I., Hill, A.J., Morton, J.G.G., 1986. A review of the structure, geology and hydrocarbon potential of the Otway Basin in South Australia. South Australian Department of Mines and Energy Report Book, 86/77.
- Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since Triassic. *Science*, 235: 1156-1166.
- Harrington, H.J., Burns, K.L., Thompson, B.R., 1973. Gambier-Beaconsfield and Gambier-Sorell fracture zones and the movement of plates in the Australia-New Zealand Region.

 Nature, 245: 109-112.
- Hedberg, H.D., 1974. Relation of methane generation to undercompacted shales, shale diapirs and mud volcanoes.

 AAPG Bulletin, 58(1): 661-673.

- Hegarty, A.K., Duddy, I.R., Green, P.F., Gleadow, A.J.W., Fraser, I., Weissel, J.K., 1986. Regional evaluation of the tectonic and thermal history of the Gippsland Basin. In: Glenie, R.C., (ed.), Second South-Eastern Australia Oil Exploration Symposium. Petroleum Exploration Society of Australia. pp. 65-74.
- Hegarty, A.K., Weissel, J.K., Mutter, J.C., 1988. Subsidence history of Australia's southern margin: constraints on basin models. *AAPG Bulletin*, 72(5): 615-633.
- Hill, A.J., 1989. Stratigraphy of the Bight and Duntroon Basin, S.A., South Australian Department of Mines and Energy Report Book, 89/91.
- Horstman, E.L., 1988. Source maturity, overpressures and production, North West Shelf, Australia. In: Purcell, P.G., and R.R., (eds), The North West Shelf, Australia: Proceedings of Petroleum Exploration Society Australia Symposium, Perth, 1988. Petroleum Exploration Society of Australia, p. 528-537.
- Hubbard, R.J., Pape, J., Roberts, D.G., 1985. Depositional sequence mapping as a technique to establish tectonic and stratigraphic framework and evaluate hydrocarbon potential on passive continental margin. *In*: Berg, O.R., Woolverton, D., (eds.), Seismic stratigraphy II: an integrated approach to hydrocarbon exploration: *AAPG Memoir*, 39: 79-91.
- Hubbard, R.J., 1988. Age and significance of sequence boundaries on Jurassic and Early Cretaceous rifted continental margins. AAPG Bulletin, 72(1): 49-72.

- James, A.T., 1983. Correlation of natural gas using the carbon isotopic distribution between hydrocarbon components. AAPG Bull., 17, p. 1176-1191.
- Larberg, G.M.B., 1983. Contra regional faulting: salt withdrawal compensation, offshore Louisiana, Gulf of Mexico, *In:* Bally, A.W., (ed.), Seismic expression of structural styles: *AAPG Studies in Geology*, 15(2).
- Lister, G.S., Etheridge, M.A., Symonds, P.A., 1986. Detachment faulting and the evolution of passive continental margins.

 Geology, 14: 246-250.
- Lister, G.S., Etheridge, M.A., Symonds, P.A., 1987. Detachment models for the formation of passive continental margins.

 In: International conference on deformation of crustal rocks, Mt. Buffalo, Australia, 2-6 Feb. 1987. Geological Society of Australia, Abstracts, 19: 80-81.
- McKirdy, D.M., 1984. Source rock and coastal bitumen study,
 Duntroon Basin, South Australia. AMDEL Report F5769/84.

 In: Forbes, A., Martin, M.J. and Tadiar, E., 1984. Permit
 EPP-21, Duntroon embayment offshore South Australia,
 Exploration Report 1984. South Australia. Department of
 Mines and Energy. Open file Envelope, 6215: 259-659.
- Mc Pherson, J.F., Shanmugam, G., Moiola, R.J., 1987. Fan deltas and braid deltas: varieties of coarse grained deltas.

 Geological Society of America. Bulletin, 99: 331-340.
- Milnes, A.R., Cooper, B.J., Cooper, J.A., 1982. The Jurassic Wisanger Basalt of Kangaroo Islands. Royal Society of South Australia. Transactions, 106(1): 1-13.

- Moraes, M.A.S., 1989. Diagenetic evolution of Cretaceous-Tertiary turbidite reservoirs, Campos Basin, Brazil. AAPG Bulletin, 73(5): 598-612.
- Morgan, R., 1990. Rapid palynology review of four Bight Duntroon Basins wells. South Australia. Department of Mines and Energy. Open file Envelope 6978. (Unpublished).
- Mutter, J.C., Hegarty, K.A., Cande, S.C., Weissel, J.K., 1985.

 Breakup between Australia and Antarctica: a brief review in the light of new data. *In*: Husebye, E.S., Johnson, G.L. and Kristoffersen, Y. (Eds.), Geophysics of the polar Regions. *Tectonophysics*, 114: 255-279.
- Nelson, R.G., Crabb, T.N., Gerdes, R.A., 1986. A review of geophysical exploration in the Polda Basin, South Australia. APEA Journal, 26: 319-333.
- Netto, A.S.T., 1984. Re-exploration in Recôncavo Basin, Brazil.

 AAPG Bulletin, 68(4): 512 (abstract).
- North, F.K., 1985. Petroleum geology. Allen and Unwin, Winchester, Mass., 607 p.
- Powell, C.McA., Rotts, S.R., Veevers, J.J., 1988. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. *Tectonophysics*, 155: 262-283.
- Powell, T.G., 1986. Petroleum geochemistry and depositional setting of lacustrine source beds. *Marine and Petroleum Geology*, 3: 200-219.

- Powis, G., Partridge, A.D., 1980. Palynological analysis of Jerboa 1, Eyre Basin, W.A., In: Huebner, P.U., 1980, (compiler). Well completion report Jerboa 1. Appendix 5, (unpublished).
- Rahmanian, V.D., Moore, P.S., Mudge, W.J., Spring, D.E., in press. Sequence stratigraphy and the habitat of hydrocarbons; Gippsland Basin, Australia. In: Brooks, J. (ed.). Classic Petroleum provinces. Geological Society of London. Special Publication.
- Rosendahl, B.R., 1987. Architecture of continental rifts with special reference to East Africa. Earth and Planetary Science Letters, 15.
- Schull, T.J., 1984. Oil exploration in non marine rift basins of interior Sudan. AAPG Bulletin, 68(4): 526 (abstract).
 - Sclater, J.G., Christie, R.A.F., 1980. Continental stretching: an explanation of the post Mid-Cretaceous subsidence in the Central North Sea Basin. *Journal of Geophysical Research* 85: 3711-3739.
 - Skeryac, A.J., Kolodny, C.R., 1983. Syn-depositional structures on mobile substrate. *In*: Bally, A.W. (ed.), Seismic expression of structural styles. *AAPG Studies in Geology*, 15(2).
 - Smith, R., Kamerling. P., 1969. Geological framework of the Great Australian Bight. APEA Journal, 19: 108-114.

- Stagg, H.M.J., Cockshell, C.D., Willcox, J.B., Hill, A.J., Needham, D.J.L., Thomas, B., O'Brien, G.W., Hough, L.P., 1990. Basins of the Great Australian Bight region: Geology and petroleum potential. Bureau of Mineral Resources, Geology and Geophysics, Australia. Continental margins program. Folio 5.
- Templeton, G., Peattie, D.K., 1986. BP Petroleum Developement Limited. Geological and petroleum engineering completion report BP Duntroon 1. South Australia. Department of Mines and Energy Open file Envelope 6535(2). (Unpublished).
- Thompson, B.P., 1969. The Kanmantoo Group and Early Paleozoic tectonics. In: Parkin, L.W. (ed.), Handbook of South Australian geology. Geological Survey of South Australia.
- Vail, P.R., Mitchum, R.M., Todd, R.G., Widmier, J.M., Thompson, S., Sangree, J.B., Bubb, J.N., Hatelelid, W.G., 1977. Seismic stratigraphy and global changes of sea level. In: Payton, C.E., (es.), Seismic stratigraphy application to hydrocarbon exploration: AAPG Memoir 26: 49-212.
- Veevers, J.J., 1986. Breakup of Australia and Antarctica estimated as mid-Cretaceous (95 \pm 5 MA), from magnetic and seismic data at the continental margin. Earth and Planetary Science Letters, 77: 91-99.
- Veevers, J.J., 1987. The conjugate continental margins of Antarctica and Australia. *In*: Eittreim, S.L. and Hampton, M.A. (eds.), The Antarctic continental margin: geology and geophysics of offshore Wilkes Land. *Circum Pacific Council for Energy and Mineral Resources*. 5A, Houston, Texas.

- Veevers, J.J., 1988. Seafloor magnetic lineation off the Otway/West Tasmanian Basins: Ridge jumps and the subsidence history of southeast Australian margins. Australian Journal of Earth Sciences, 35: 451-562.
- Veevers, J.J., Eittreim, S.F., 1988. Reconstruction of Antarctica and Australia at breakup (95 ± 5 Ma) and before rifting (160 Ma). Australian Journal of Earth Sciences, 35: 355-362.
- Von Sanden, A.T., Barten, H.G., 1977. Stratigraphy and palynology of the Great Australian Bight, Shell Development (Australia), Report 217, (unpublished).
- Weber, K.J., 1971. Sedimentological aspects of oil fields in the Niger Delta. *Geologie en Mijnbouw*, 50(3): 559-576.
- Weissel, J.K., Hayes, D.E., 1972. Magnetic anomalies in the southeast Indian Ocean. In: Hayes, D.E. (ed). Antarctic Oceanology, Vol. 2, The Australia- New Zealand sector.

 American Geophysical Union. Antarctic Research Series, 19: 165-196.
- Weldon, R.J., 1984. Implication of the age and distribution of the Late Cenozoic stratigraphy in Cajou Pass, Southern California. In: San Andreas fault-Cajou Pass to Wrighwood. Hester, R.L., Halbinger, D.E. (eds.), Association of Petroleum Geologists. Pacific Section, Volume and guide book 55: 9-15.
- Wernicke, B., Burchfiel, B.C., 1982. Modes of extensional tectonics. Journal of Structural Geology, 4(2): 105-115.

- Whittle, A.P., Short, G.A., 1978. The petroleum geology of the Tembungo Oil Field, East Malaysia. In: Lowell, D.J. (Ed.), Structural styles in Petroleum Geology, OGCI Publications. Tulsa. (1985).
- Willcox, J.B., 1990. Gravity trends as an expression of lithospheric extension on the southern margin of Australia.

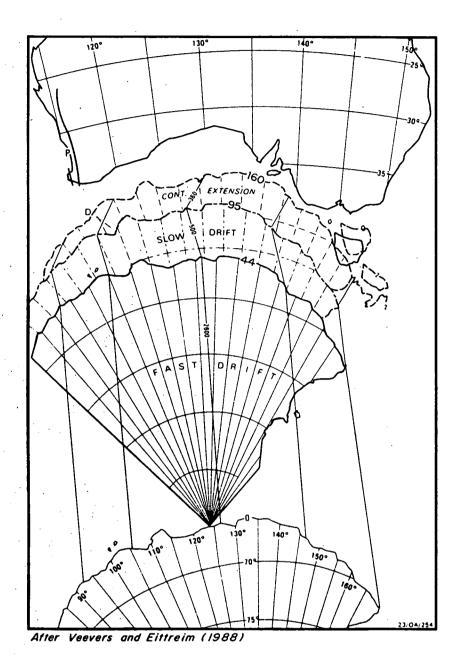
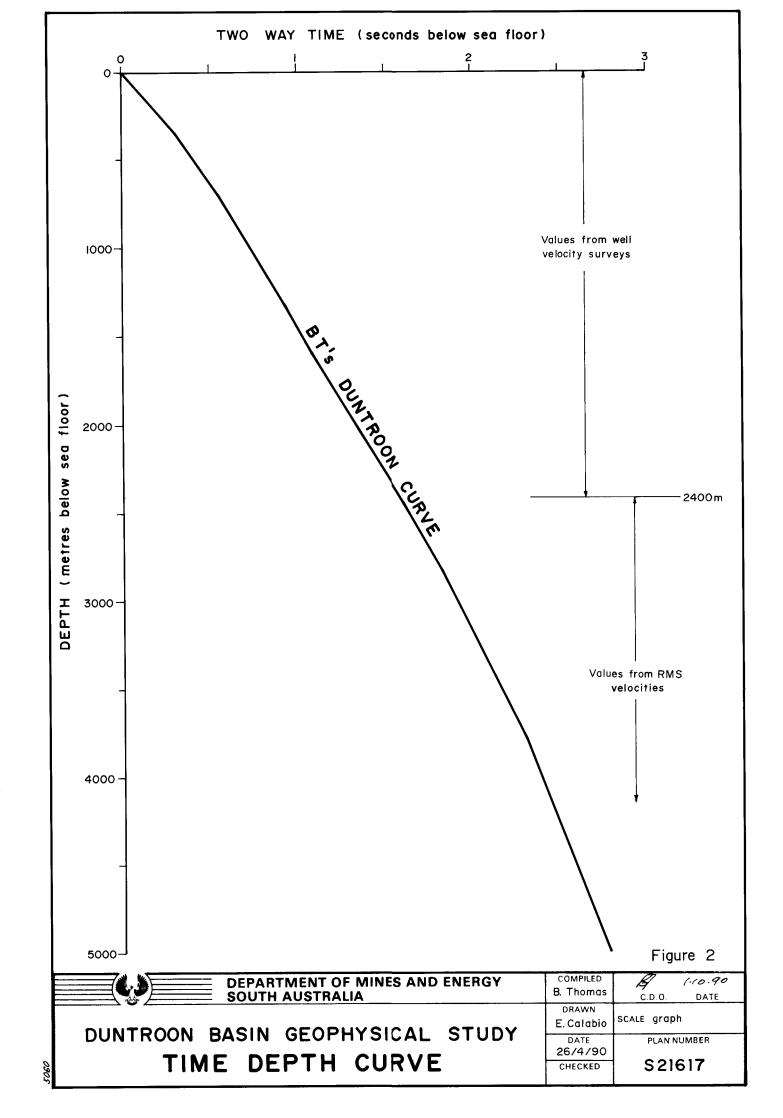

 Australian Journal of Earth Sciences, 37: 85-91.
- Willcox, J.B., Stagg, H.M., 1990. Australia's southern margin, a product of oblique extension. *Tectonophysics*, 173: 269-281.
- Willcox, J.B., Stagg, H.M.J., Davies, H.L., 1988. Rig seismic research cruises 10 & 11: geology of the central Great Australian Bight region. Bureau of Mineral Resources, Geology and Geophysics, Australia. Report 286.
- Williamson, P.E., O'Brien, G.W., Swift, M.G., Felton, E.A., Scherl, A.S., Lock, J., Exon, N.F., Falvey, D.A., 1987. Hydrocarbon potential of the offshore Otway Basin. APEA Journal, 27(1): 173-194.
- Williamson, P.E., Pigram, C.J., Colwell, J.B., Scherl, A.S., Lockwood, K.L., Branson, J.C., 1987. Review of stratigraphy, structure and hydrocarbon potential of Bass Basin, Australia. AAPG Bulletin 71(3): 253-280.
- Wu, H., Liang, D., 1984. Analysis on formation condition of 3 oil fields in Jizhong Depression. Beijing Petroleum Symposium. Sept. 20-24, 1984.

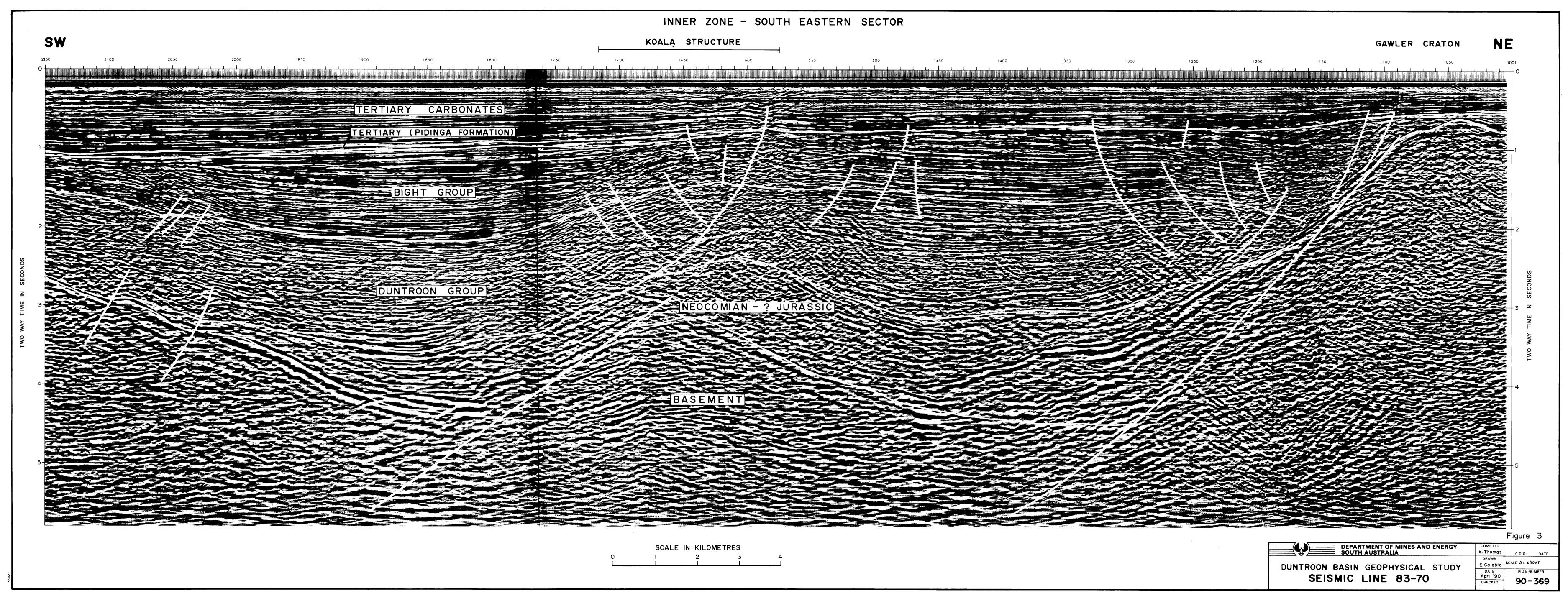
TABLE 1 BIGHT/DUNTROON BASINS: FORMATION TOPS: DATUM KB (m) (after Hill, 1989)

WELL	APOLLO 1	DUNTROON 1	ECHIDNA 1	JERBOA 1	MALLABIE 1	PLATYPUS 1	POTOROO 1
YEAR SEA LEVEL DATUM SEABED	1975 9 75	1986 27 171	1972 30 169	1980 10 761	1969 60 —	1972 30 188	1975 9 261
OCK UNIT							
JCLA GROUP NULLARBOR LST. WILSON BLUFF		1 424	. 1 002	1 075	33	1 421	
DINGA/HAMPTON*	380*	1 631	1 209	1 103*	141	1 628	940*
IGHT GROUP POTOROO FM. WIGUNDA FM. WOMBAT SANDSTONE MEMBER PLATYPUS FM.	ABS ABS ABS	1 833 2 155 2 468 2 541	ABS ABS ABS ABS	ABS ABS ABS [1148]	ABS ABS ABS ABS	1 691 2 206 2 871 2 974	990 1 570 ABS [1 776]
TROON GROUP EDUNA FM. DRDA FM. EPTUNE FM. CHIDNA FM.	ABS ABS ABS ABS	2 590 2 983 NP NP	1 304 3 016 3 595	[1224] ABS [1635] ABS	ABS	3 376 NP NP NP	[2 420] ABS [2 690]
OURA FM ONGANA FM.	394 547			2 099	169 260		2 734
NAMED PERMIAN	633	NP .	NP	ABS	335 ·	NP	ABS
ECAMBRIAN- RCHAEAN	858 892	NP 3 515.6	NP 3 823	2 509 2 537.5	437 1 496	NP 3 881	2 812 2 923

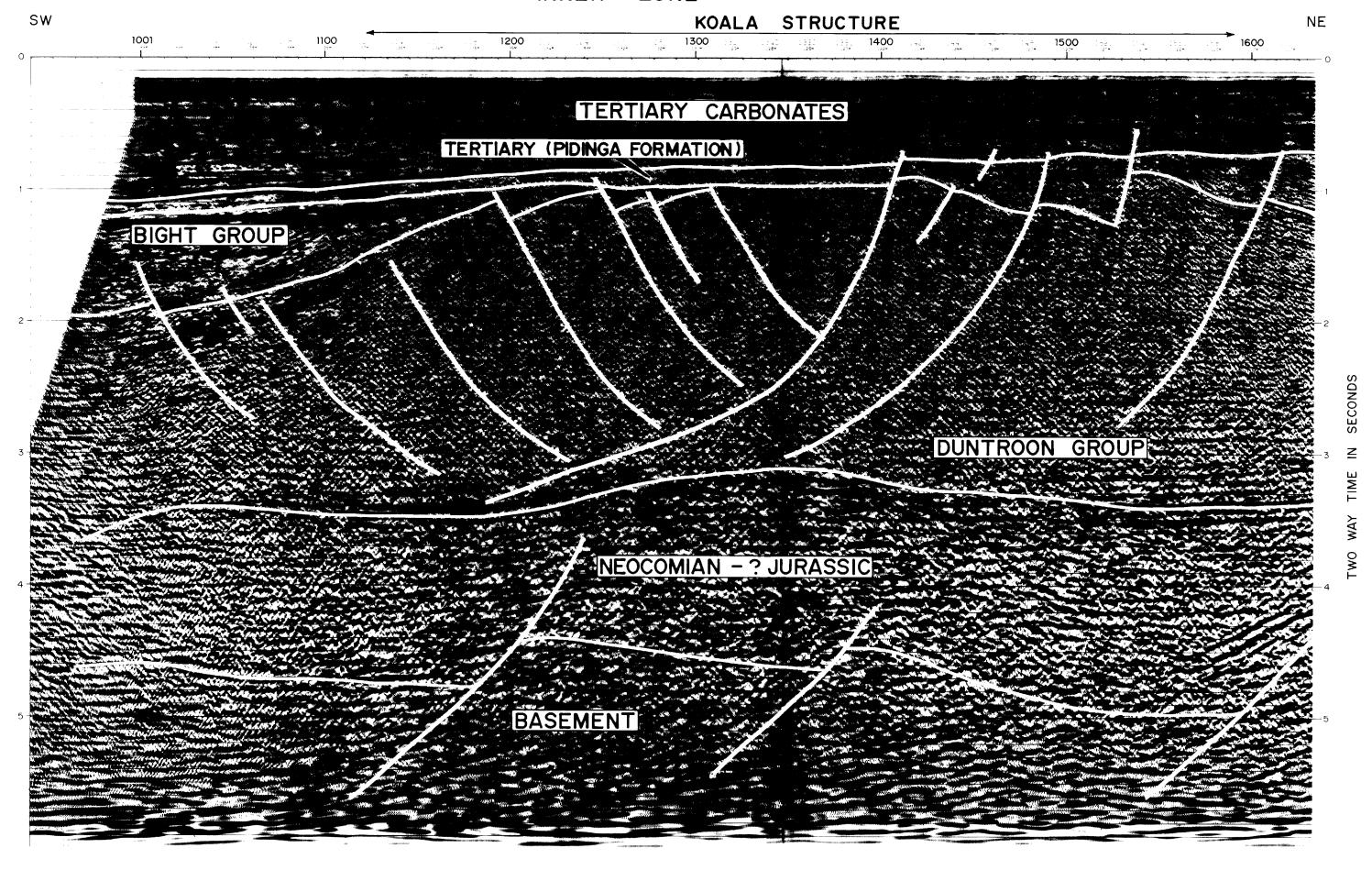
(in

denotes 'equivalent' not penetrated Hampton Sandstone




Reconstruction of the separation of the Australian and Antarctic plates:

- 160 Ma initial position
- 96 Ma end of continental extension
- 44 Ma end of slow drift phase


Figure 1

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	COMPILED B. Thomas	(1.10.90 C.D.O. DATE
DUNTROON BASIN GEOPHYSICAL STUDY	DRAWN E. Calabio	SCALE
AUSTRALIAN AND ANTARCTIC PLATES RECONSTRUCTION AT RIFTING AND AFTER RIFTING STAGES	DATE 27/4/90 CHECKED	PLAN NUMBER S 21616

INNER ZONE

SCALE IN KILOMETRES

O 1 2 3 4

Figure 4

DEPARTMENT OF MINES AND ENERGY
SOUTH AUSTRALIA

C.D.O. DA

DUNTROON BASIN GEOPHYSICAL STUDY
SEISMIC LINE 84-16

B. Thomas

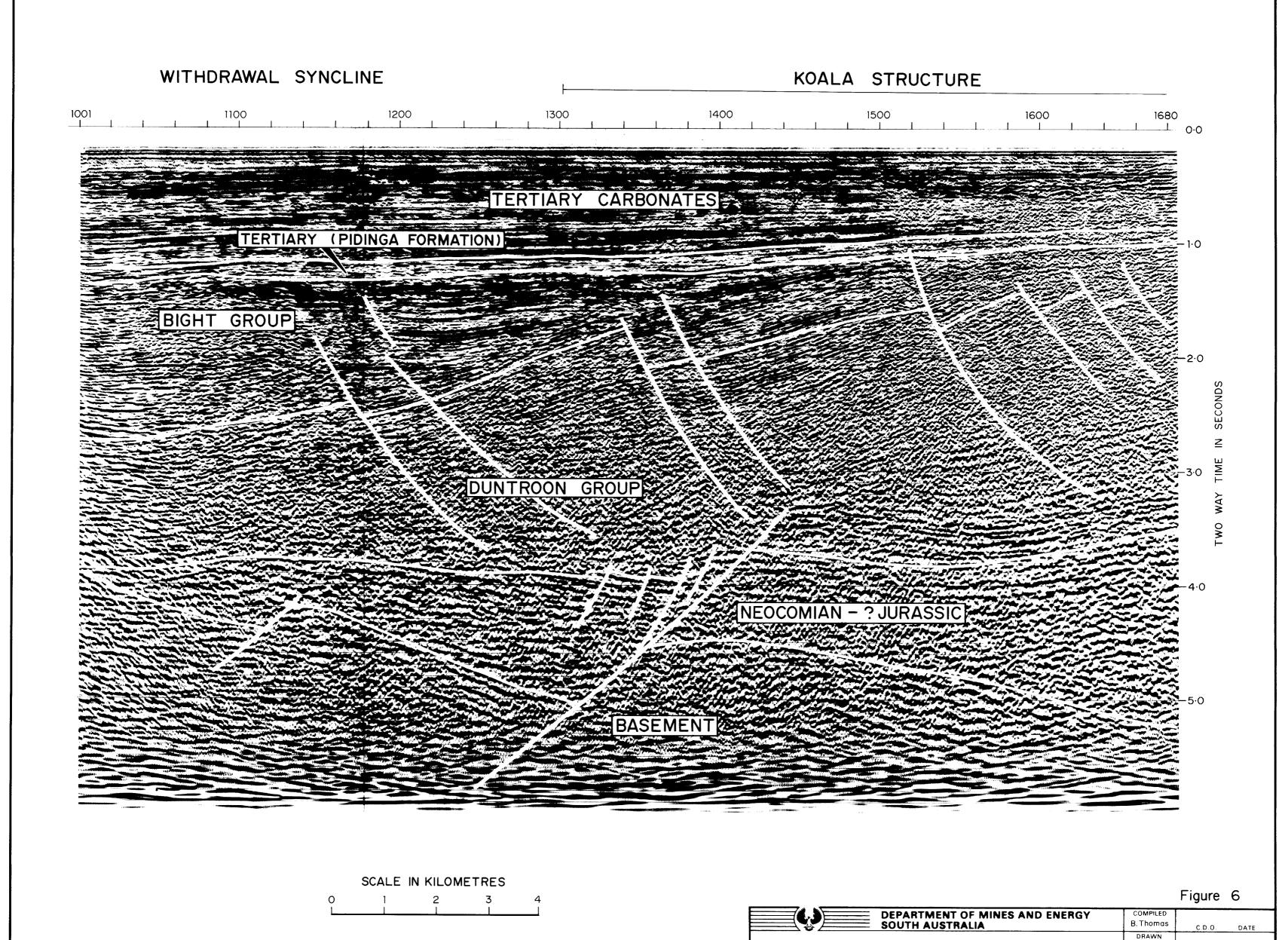
C.D.O. DATE

DRAWN
A. F.

DATE
May 1990
CHECKED

C.D.O. DATE

PLAN NUMBER


90 - 370

STRATIGRAPHY OF EUCLA, BIGHT - DUNTROON BASINS - SOUTH AUSTRALIA

		BIOSTRA- TIGRAPHY		STI	RATIGRAPHY			
PERIOD EPOCH/AGE		SPORE-POLLEN ZONES	EYRE SUB-BASIN	EUCLA BASIN	BIGHT - DUNTROON NW BASINS SE			
QUA	TE	RNA	ARY					
		PLIOCENE		M. lipsus		NULLARBOR		
TERTIARY		LATE		C. bifurcatus		LMST.	NULLARBOR LIMESTONE	
		MIOCENE	MIDDLE	T. bellus ,		ABRAKURRIE	LIMESTONE	
			EARLY	P tuberculatus		LMST.		
		LATE		Upper N. asperus	?			
					WILSON BLUFF	WILSON	WILSON BLUFF	
		NE	LATE MIDDLE	Lower N. asperus	LMST. HAMPTON	BLUFF LMST. HAMPTON S.	LIMESTONE	
		EOCENE	EARLY	P. aspropolus Upper M. diversus Middle M. diversus	SST.			
		₩ LATE		Lower M. diversus Upper L. balmei			PIDINGA ATTIMITATION	
		PALAEOCENE	MIDDLE	Lower L.Balmei			FMN	
S		MAASTRICHTIAN		T. longus			POTOROO FMN	
		CAMPANIAN		N. senectus			POTOROO FMN	
	TE	SANTONIAN		T. apoxyexinus			WIGUNDA	
	ר	CONIACIAN		P mawsonii			WOMBAT SST. MBR	
		TURONIAN CENOMANIAN		A. distocarinatus	PLATYPUS / MADURA PLATYPUS FMN FMN PLATYPUS FMN			
EOUS		ALBIAN		P. pannosus			CEDINA EMN	
ACE				C. paradoxa	CEDUNA FMN EQUIVALENT	MADURA	CEDUNA FMN	
CRETAC				C. striatus		FMN	1111)	
EARL	רַל	APTIAN		C. hughesi			BORDA FMN	
	EAR	BAR	REMIAN		NEPTUNE FMN EQUIVALENT		BORDA FMN ? NEPTUNE FMN LOONGANA ECHIDNA FMN	
		AN	lauterivian	F. wonthaggiensis	LOONGANA FM	LOONGANA	LOONGANA & ECHIDNA FMN	
		NEOCOMIAN	Valanginian	C. australiensis				
	<u> </u>	Berriasian						
JURASSIC		TITHONIAN R. wathers		R. watherooensis				
		_	· · · · · · · · · · · · · · · · · · ·			$\mathbf{L}_{\mathbf{L}}$		
EARI PERM	LY IAN	1				DENMAN BASIN		
EARLY PALAEOZOIC			1	KANMANTOO GROUP				
ADELAIDEAN ARCHAEAN BASEMENT		1						

SADME B11090

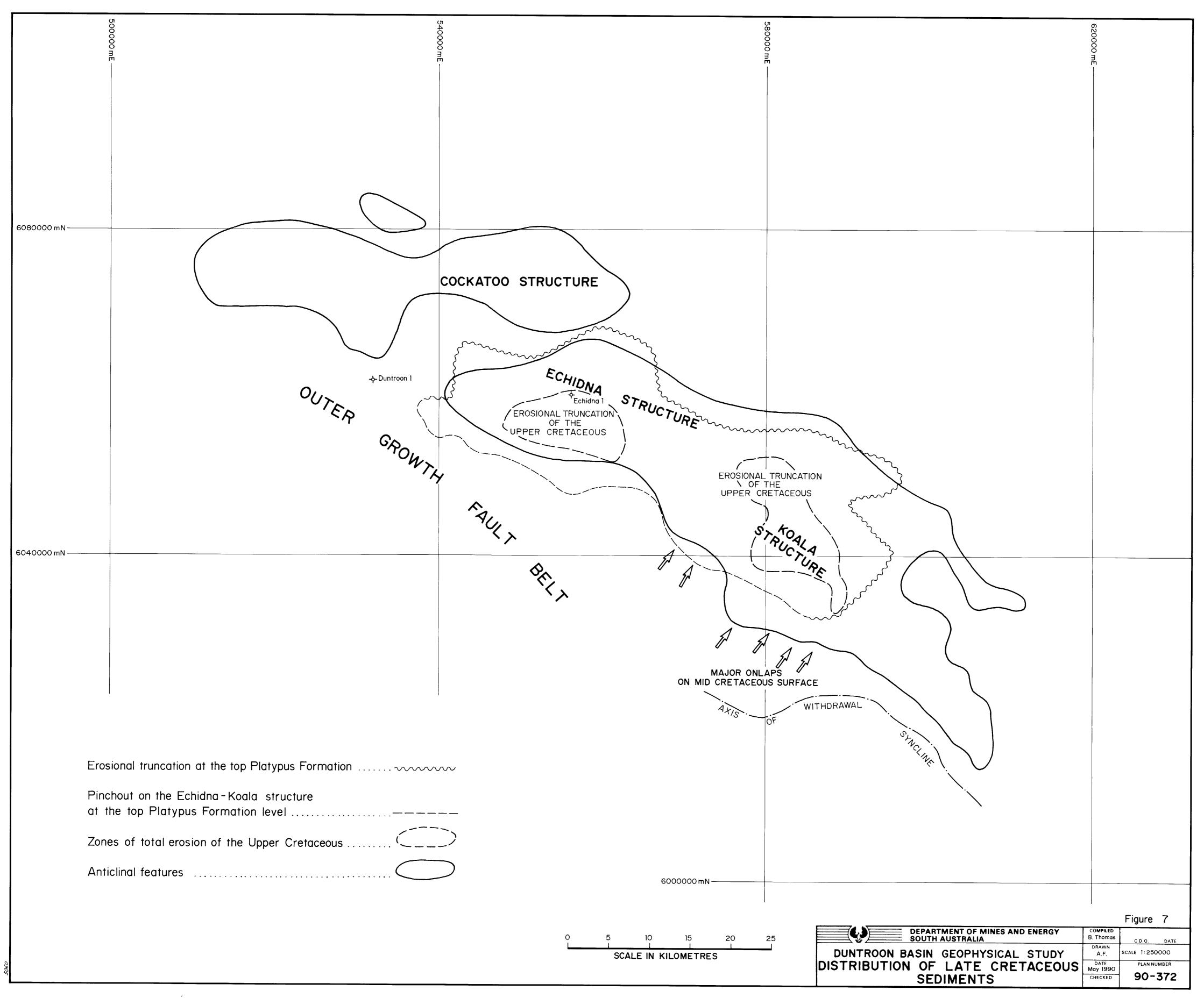
Figure 5 S 21701

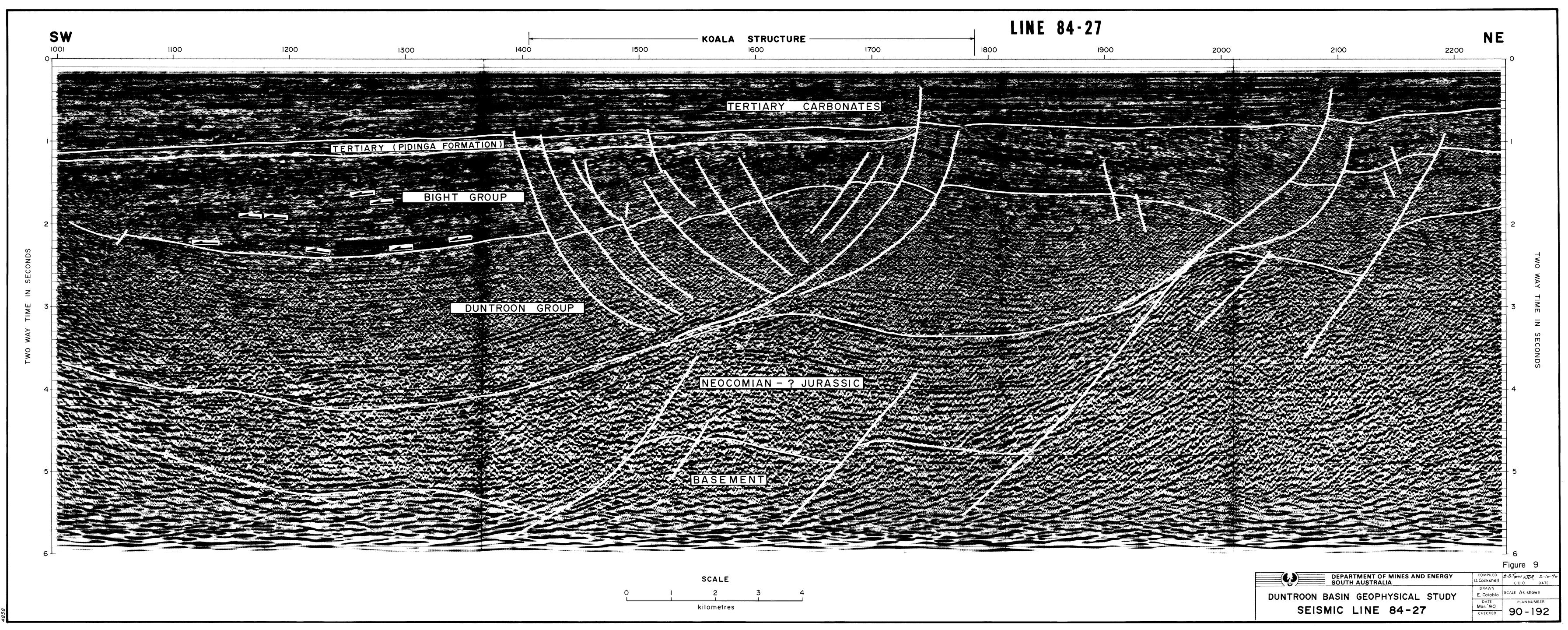
DUNTROON BASIN GEOPHYSICAL STUDY

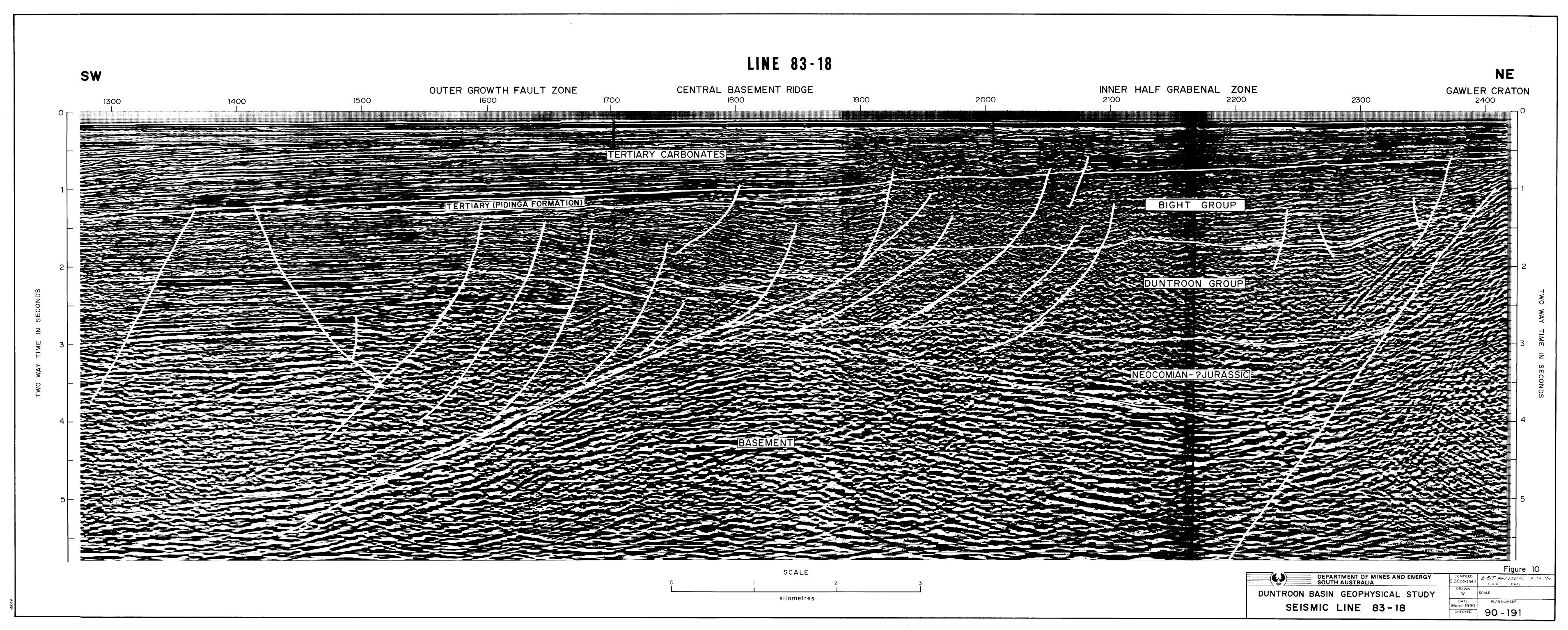
SEISMIC LINE 84-17

SCALE As shown

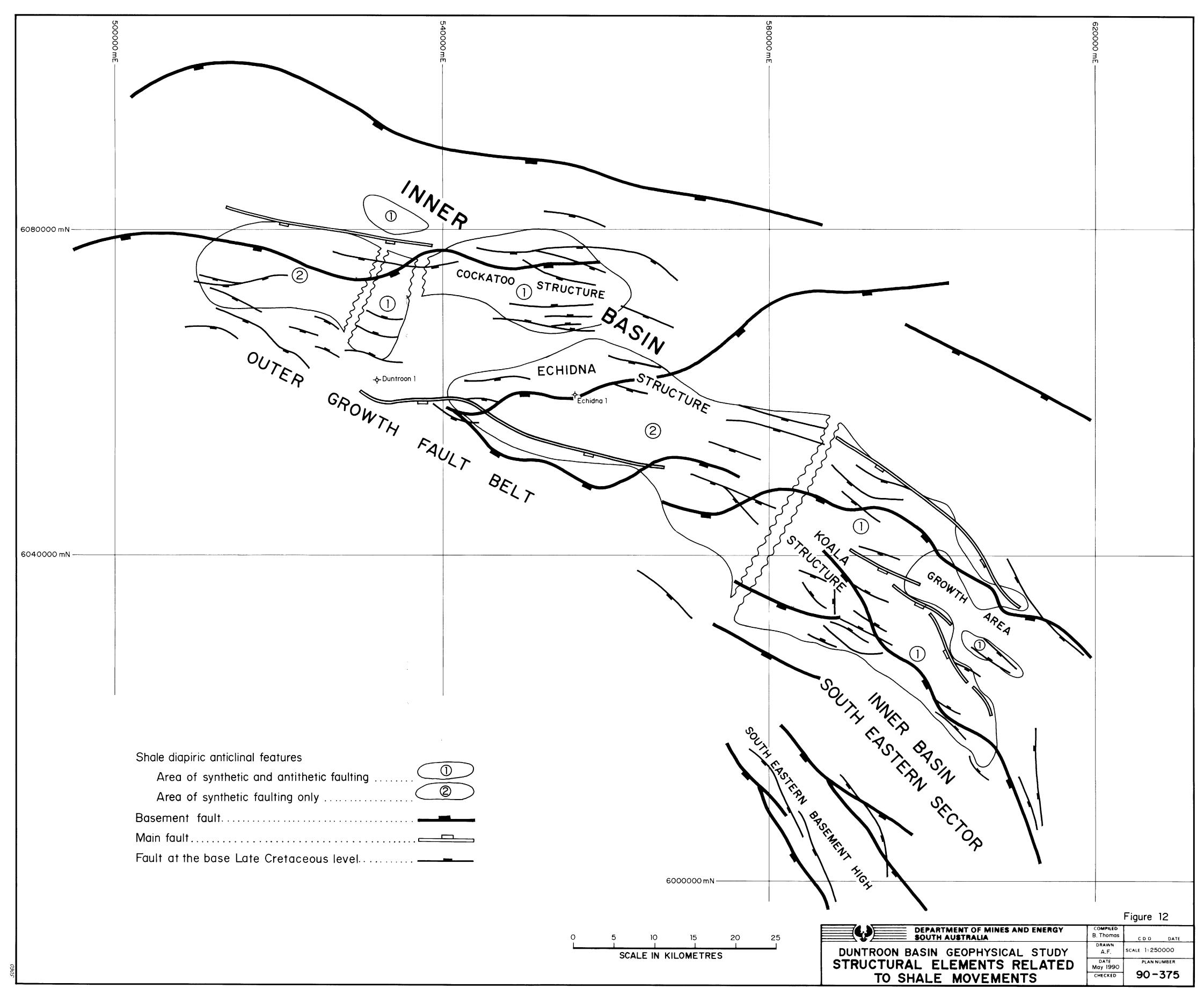
PLAN NUMBER

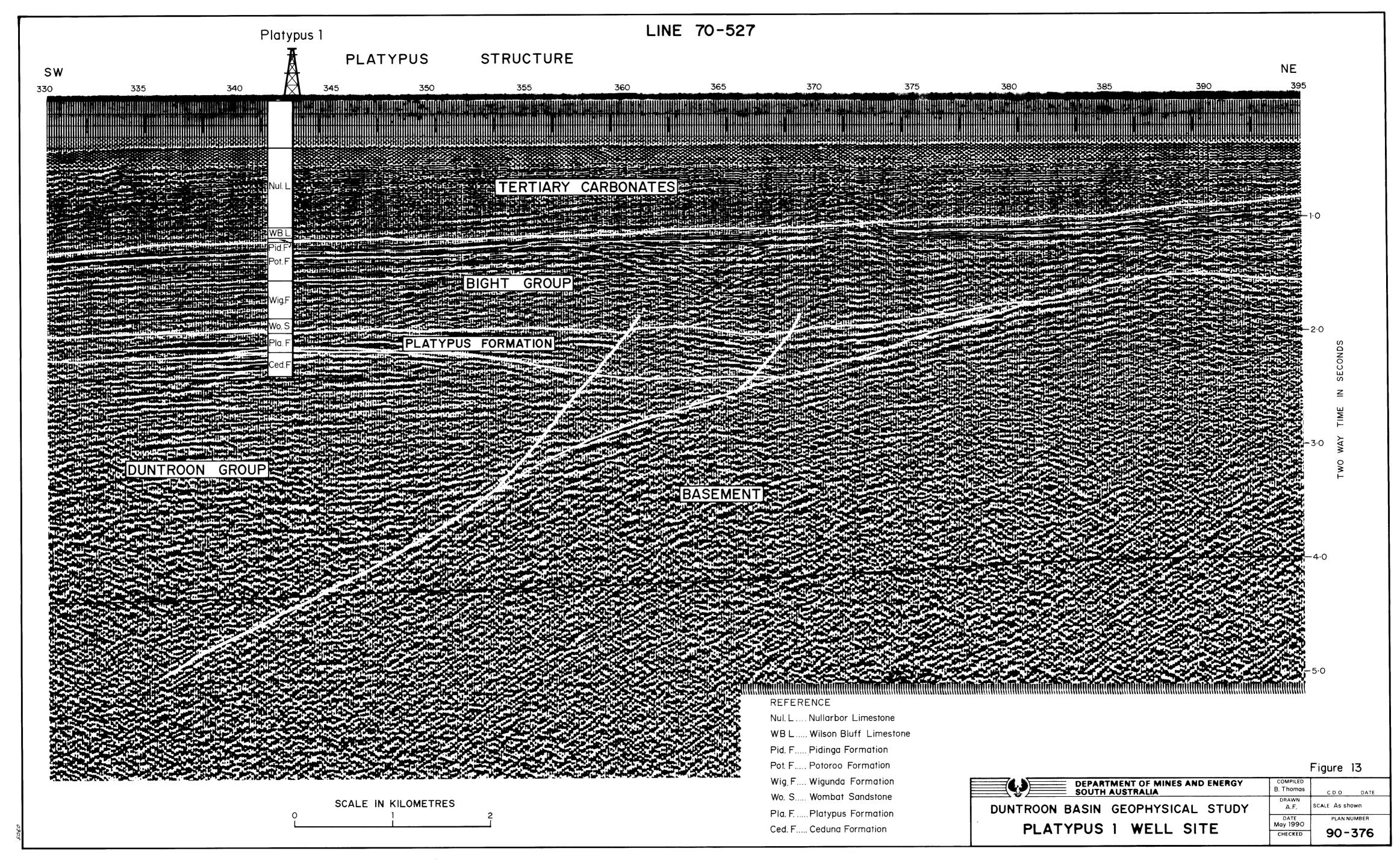

90-371

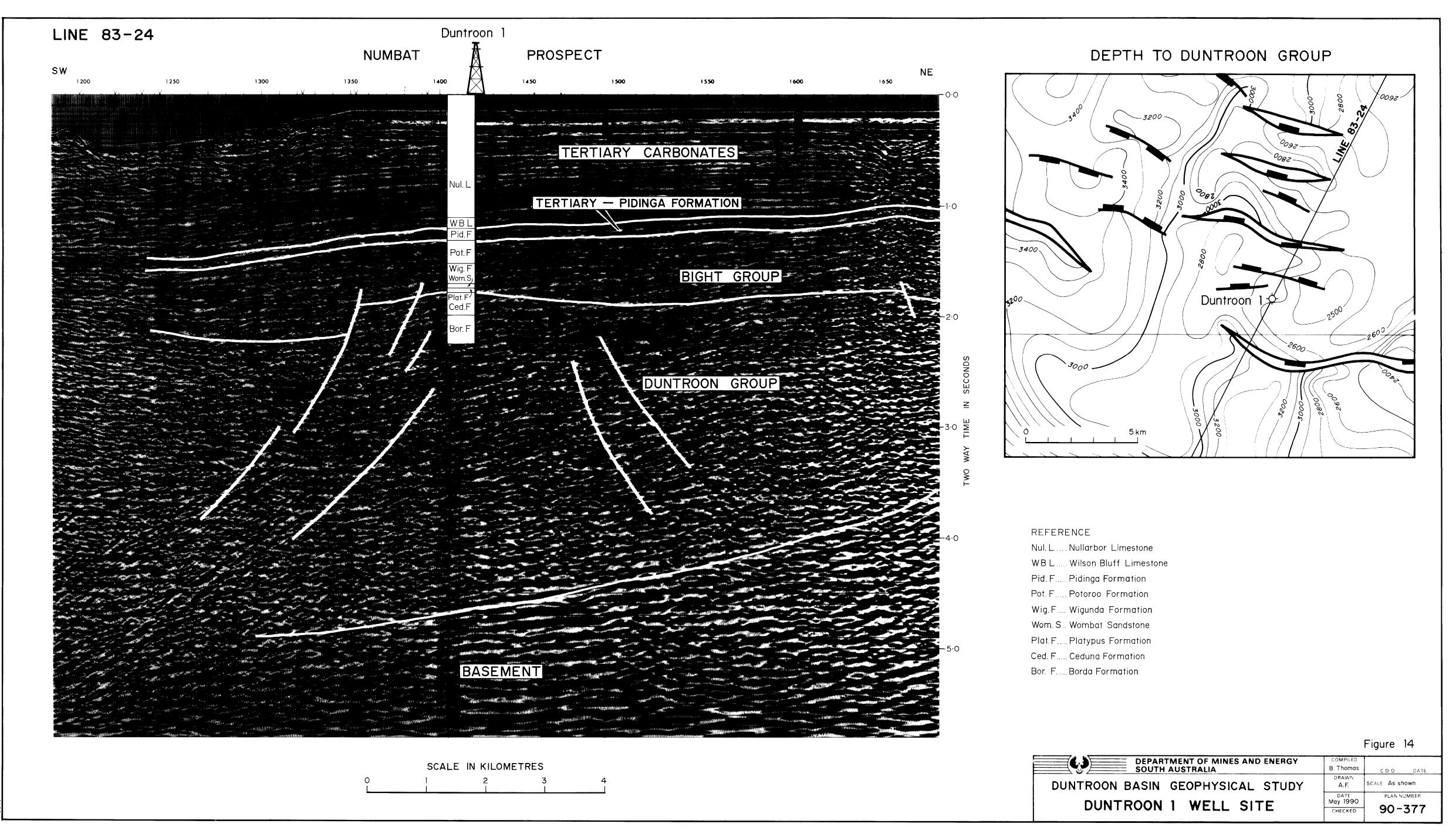

A.F.

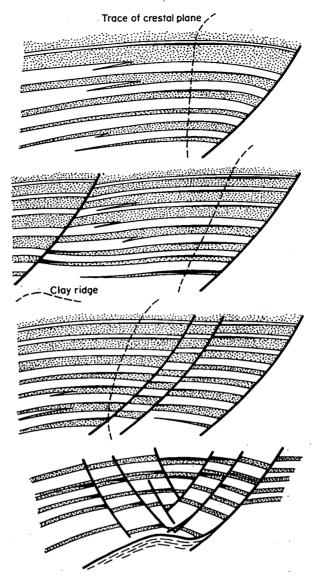

May 1990

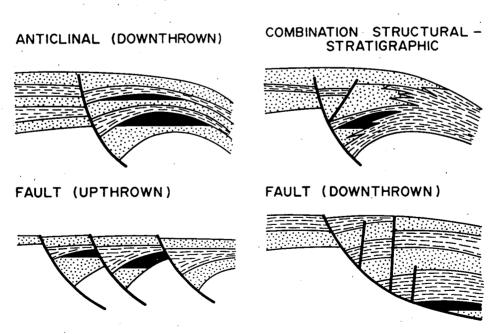
CHECKED


2060

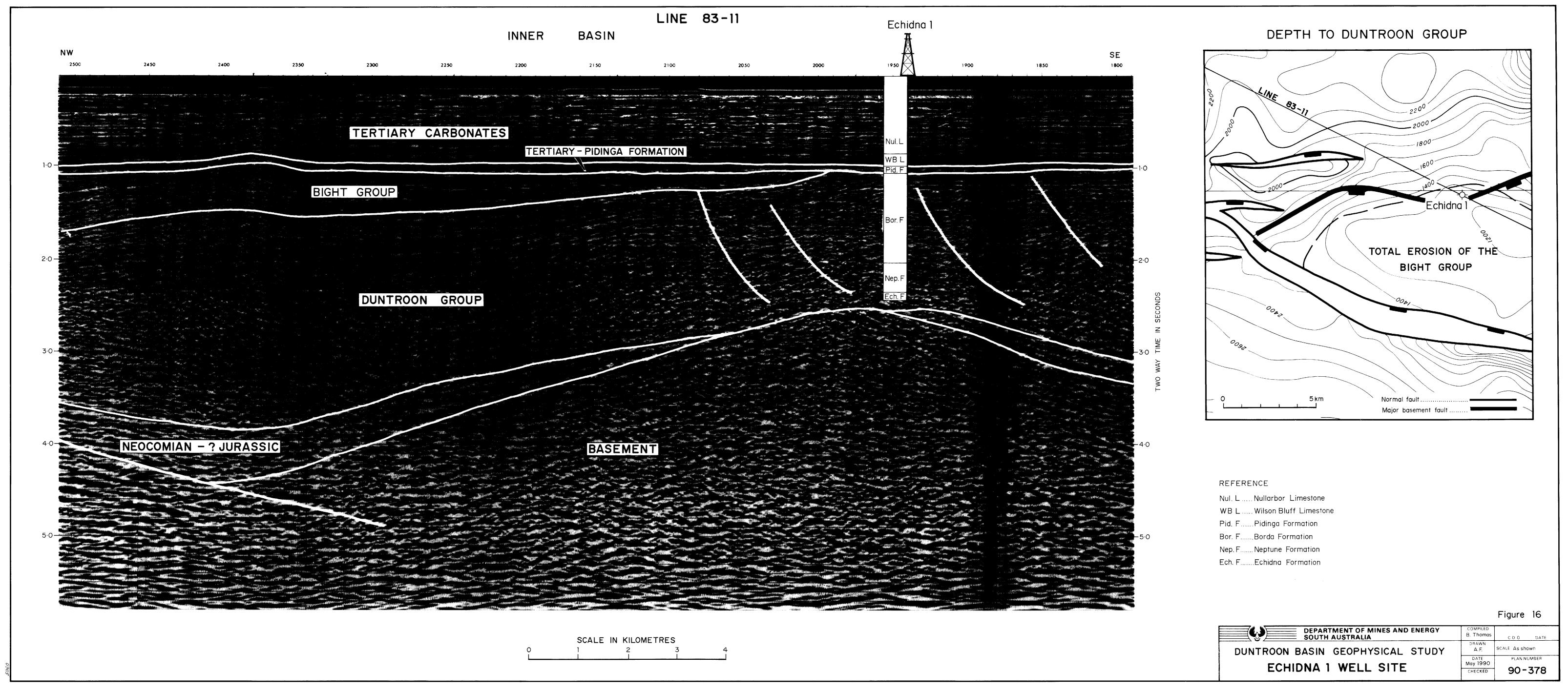


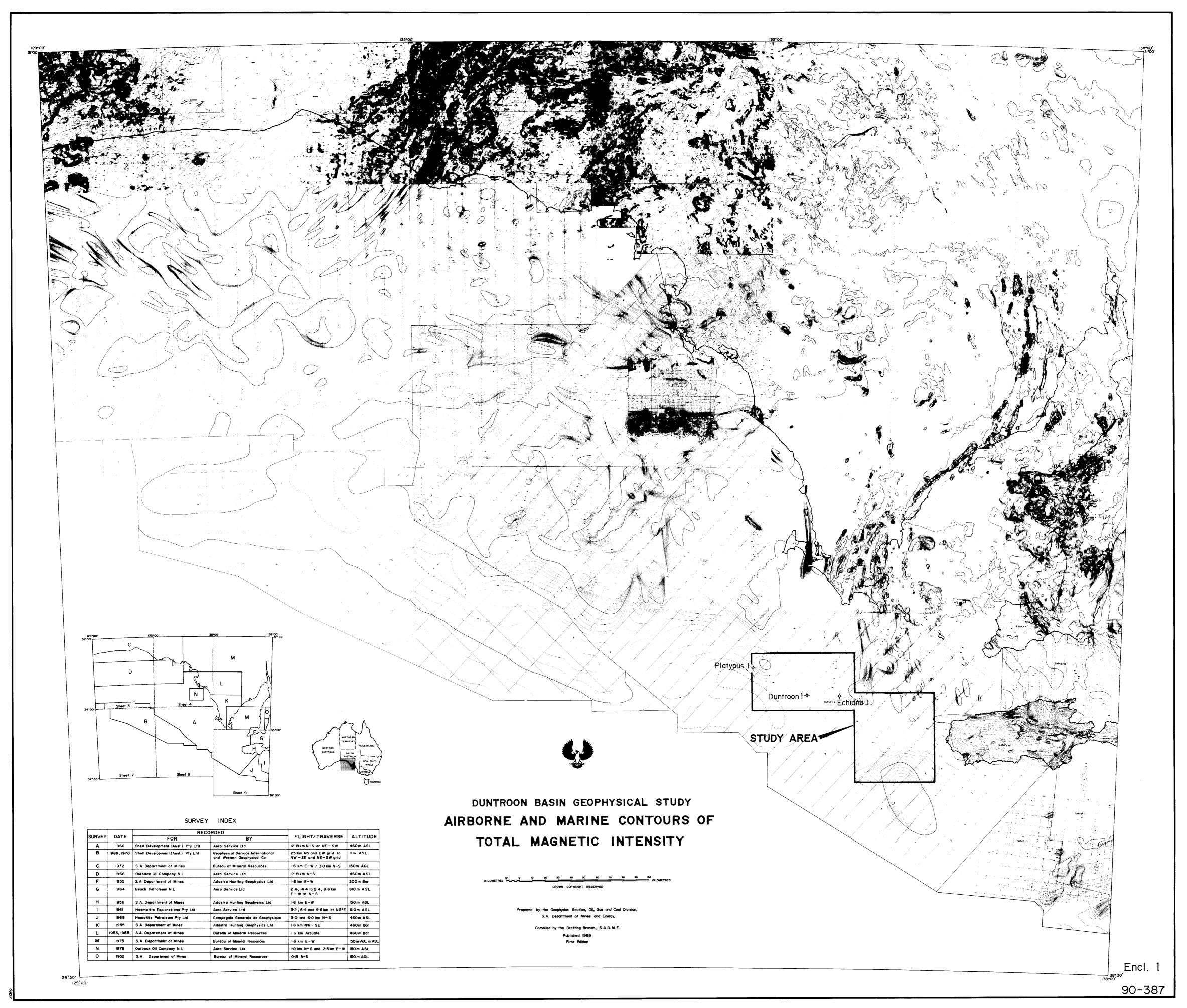


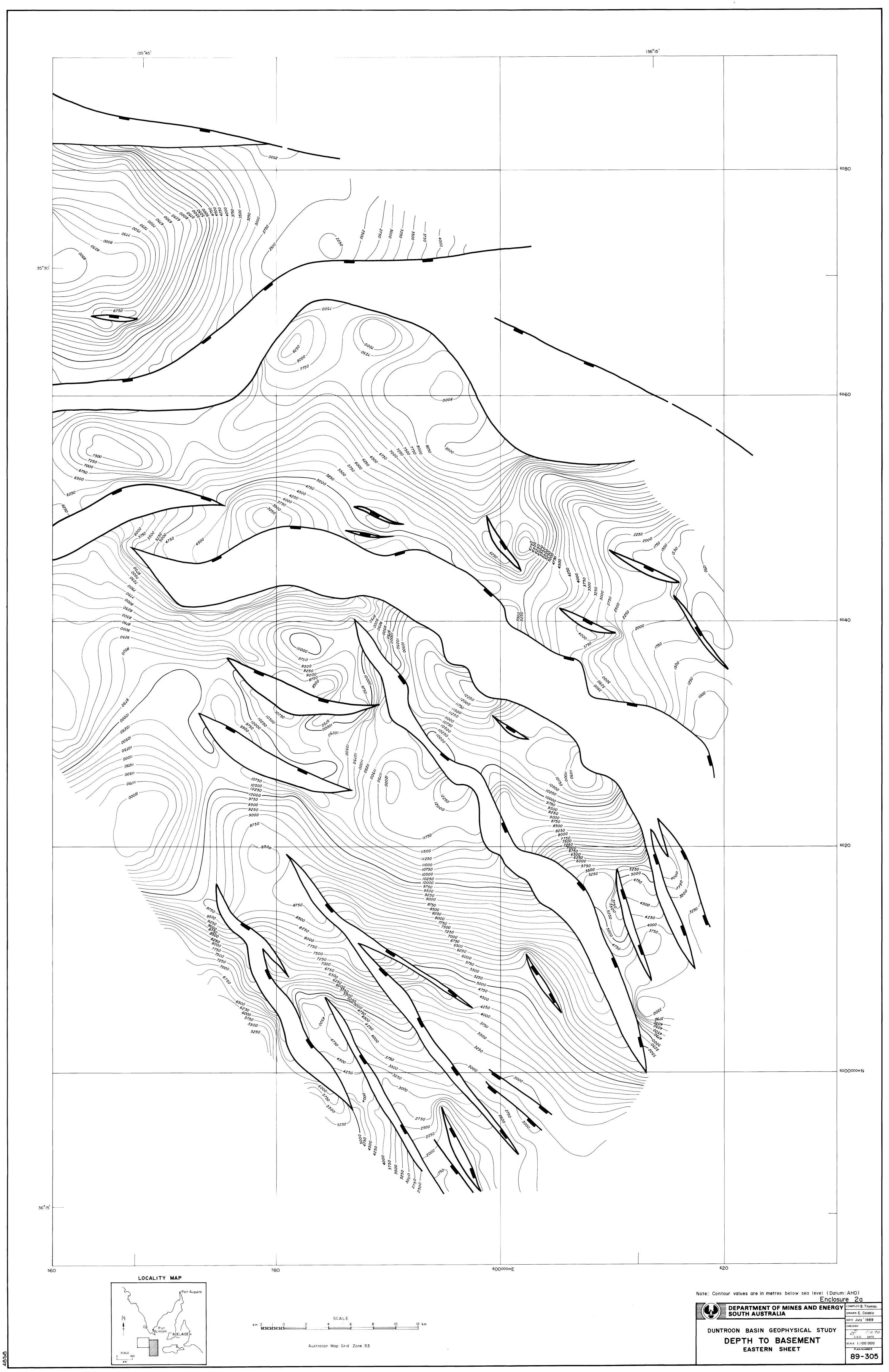


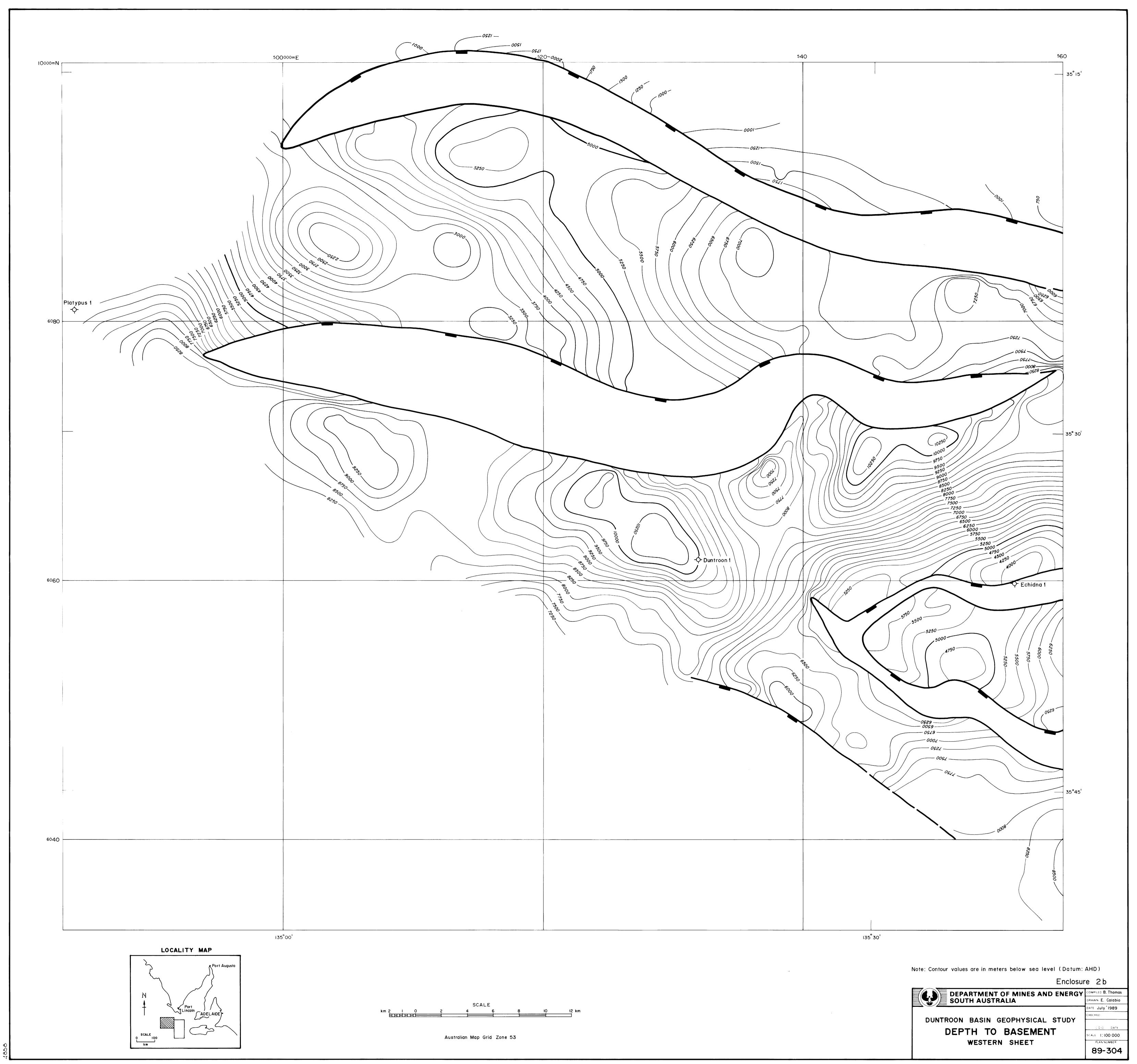


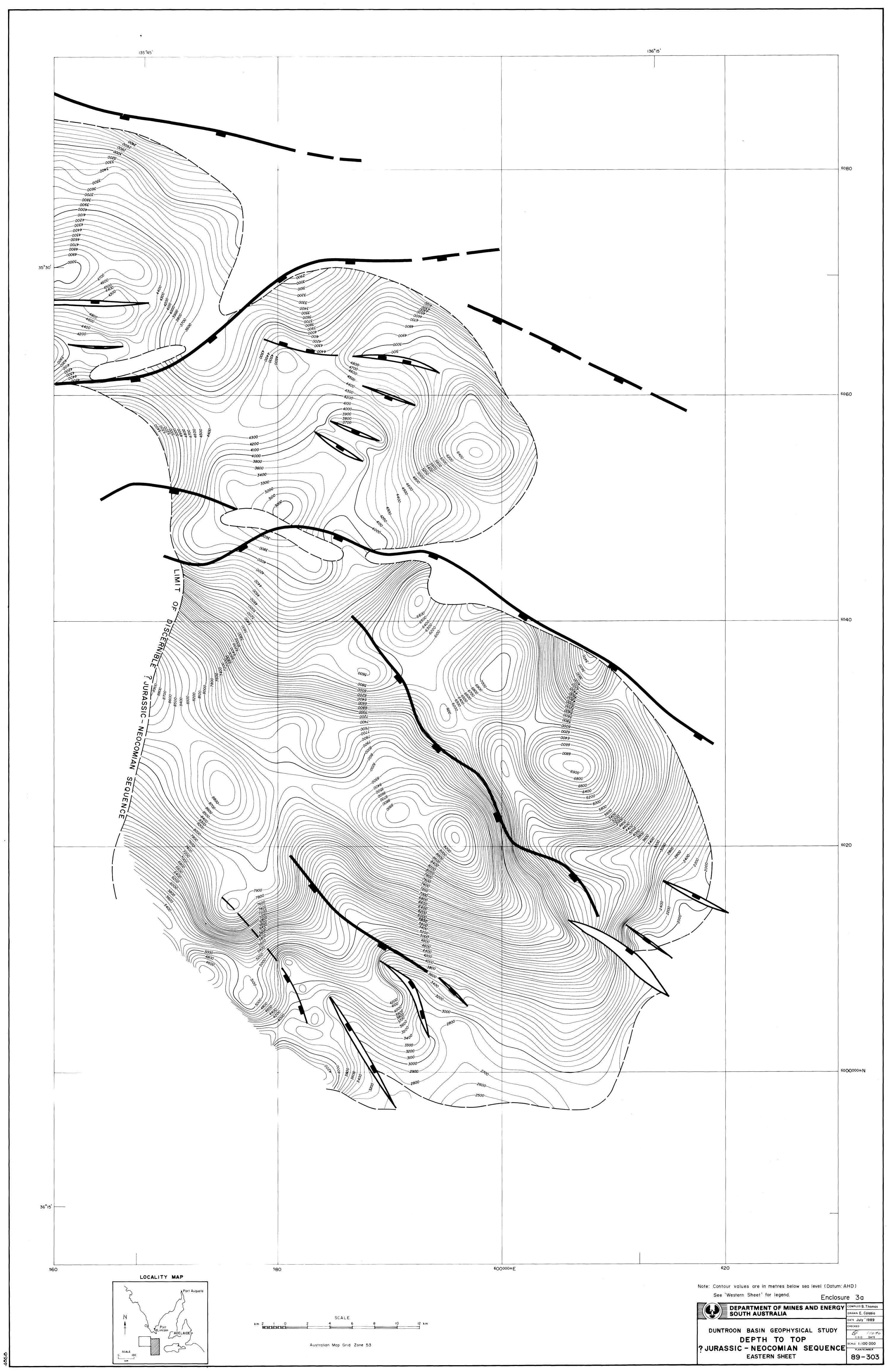
A. In the Niger Delta (after Evamy et al., 1978)




B. In the Texas Gulf (after Larberg, 1983)


Figure 15. Principal types of hydrocarbon traps associated with growth faults.


Department of Mines and Energy-South Australia


S 21618

