DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

Rept.Bk.No. 79/61
GEOCHEMICAL EXPLORATION FOR GOLD
ORAMA HILL AREA

GEOLOGICAL SURVEY

BY

J.J. MARTINS

MINERAL RESOURCES DIVISION

G.S. No. 6179 D.M. No. 263/77

CONTENTS		PAGE
INTRODUCTION	* -	1
LOCATION	١.	1,
PREVIOUS WORK		1
GEOLOGICAL SETTING		2
SAMPLING AND RESULTS		2
CONCLUSION		3
REFERENCES		4
		•

APPENDIX I Petrological Report Amdel No. GS 4439/78

II Results of chemical Analysis Amdel Reports AC 4450/78 and AC 258/79.

PLANS

Figure No.	<u>Title</u>	Drawing No.
1	Geochemical Exploration for Gold Orama Hill Area. Location and Regional Geology.	S 13569
2	Geochemical Exploration for Gold Orama Hill Area. Geology and Sample Location.	78-596

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

Rept.Bk.No. 79/61 G.S. No. 6179 D.M. No. 263/77

GEOCHEMICAL EXPLORATION FOR GOLD ORAMA HILL AREA

INTRODUCTION

Gold mineralisation occurs near Orama Hill, north of Koonamore Station and at Kirkeek's Treasure Gold Mine, Nillinghoo Goldfield. These two localities are about 25 km apart and lie along the axis of the Orama Hill Anticline.

In June 1978, W.P. Fradd and J.J. Martins carried out a stream sediment survey over the central part of this anticline to explore for fine grained gold mineralisation in the anticline between these two gold occurrences.

LOCATION

Orama Hill lies in the north eastern corner of ORROROO. It is about 80 km north north west of Yunta, which is 230 km north of Adelaide on the Barrier Highway, about half way to Broken Hill. The area lies on Koonamore Station, Lytton County and within the Far North Planning Area (Figure 1). Steep sided gullies make vehicular access within the area difficult.

PREVIOUS WORK

Gold was discovered near Orama Hill about 1935 by Messrs Butler and Donnallan (Pearson, 1935). The workings consist of a shallow trench about 75 km long, 3 m deep and 2 m wide. At either end of this trench are two shafts about 5-6 m deep. A few trial pits are located further west in the same line as the trench. Some of the north draining creeks were worked for alluvial gold.

In 1975, the area was held by F.W.C. Reick as Mineral Leases 4421-4424. It appears that no mining was done as no production is recorded during this period. In late 1975, B.J. Morris. (Geologist) and I.C. Grant (Supervising Geologist) visited the lease and collected six samples from the workings. Three of these samples assayed anomalous gold values of up to 83 gm/tonne gold (Morris, 1975).

GEOLOGICAL SETTING

The area investigated covers the northeastern corner of the ORROROO 1:250 000 map sheet (Binks, 1968). The rocks exposed which belong to the Wilyarpa Formation (Yudnamatana Sub-Group) comprise well bedded siltstone with interbeds of medium grained off-white felspathic sandstone which forms prominent ridges.

Erratics occur in thin bands interbedded occasionally in the siltstone. The interbedded sandstone-siltstone beds are tightly folded into the west south westerly plunging Orama Hill Anticline (Binks, 1971). Outcrop of an adamellite vein with gneissen type alteration was observed on the northern limb of the anticline north of Orama Hill (See Appendix I). Numerous east-west quartz veins outcrop around the anticline, and the sandstone beds adjacent to these veins are mottled due to iron oxide pseudomorphs after pyrite. A 3 km long shear zone, dipping steeply to the south, was located near the axis of the anticline. Quartz ironstone veins are associated with the shear zone and the Orama Hill gold occurrence.

SAMPLING AND RESULTS

One hundred and twenty nine stream sediment samples at an average density of 3.4 samples/km² were collected by W.P. Fradd and J. Martins in June 1978. The sample locations are shown on Figure 2. The samples were sieved in the field to -20# size fraction (850 microns) and submitted to Amdel for gold analysis

by the Amdel C_3 method (detection limit 50 p.p.b.) and for copper, lead, zinc, silver, arsenic, cobalt, molybdenum, manganese, barium and nickel by emission spectrometry.

No gold was detected in the sample although pin-head size gold fragments were seen in the pan in samples from locations 32, 37, and 43. All results (see Appendix II), were placed on computer file. The statistical calculations listed in Table 1 show no significant anomalies.

STATISTICAL DATA

Table 1

Elements	Cu	Pb	Zn	Со	Ni	Мо	Ag	Ba	Mn
Mean Median St. Dev. Threshold (2.5 x	87.97 83.46 29.44	84.49 68.86 65.27	51.41 35.00 63.54	29.06 21.71 22.41	93.83 77.50 54.50	0.92 0.19 2.90	0.19 0.19 0.10	323.30 381.30 242.06	735.70 505.0 604.67
mean) Range	219.90 200.00	211.20 300.00	128.50 400.00	72.65 200.00	234.60 300.00	2.30 20.0	0.50 0.80	833.0 800.00	1837.50 2930.0

CONCLUSION

The results indicate that there is no widespread fine grained gold mineralisation in the Orama Hill Area.

No gold was detected in samples taken less than 500 m downstream from an area of known gold mineralisation, despite gold being detected on panning.

Hence, there is a need to review the sampling procedure being used in stream sediment sampling for gold. Possibly a sample larger than 2.5 gms will have to be used for digestion or the sample will have to be gravity concentrated before submission for analysis.

15/5/79 JJM:GU J.J. MARTINS

Mineral Resources Division

fle Mater

REFERENCES

- Binks, P.J., 1968. ORROROO map sheet <u>Geological Atlas of</u>

 <u>South Australia</u>. 1:250 000 series. Geol. Survey of South Australia.
- Binks, P.J., 1971. The Geology of the ORROROO 1:250 000 map area. Rep. Invest., Geol. Survey S. Aust. 36.
- Morris, B.J., 1975. Report on a visit to Mineral Leases 4421, 4422, 4423 and 4424 ORROROO 1:250 000 sheet. S. Aust. Dept. Mines report 75/144 (unpublished).

APPENDIX I Petrological Report Amdel No. GS 4439/78

PETROGRAPHY OF ONE ROCK

Sample: P817/78; TS40427

Location:

Orroroo, 1:250,000 sheet. 80 km NE of Yunta and 1 km SE of Orama Hill on Koonamore Station.

Rock Name:

Leucocratic adamellite vein in conglomerate

Hand Specimen:

The hand specimen contains a pale grey to dull white granitic band in a dark coloured conglomeratic sediment. The conglomeratic sediment contains large, angular fragments up to 1.5 cm in size and the granitic band is approximately 6 cm wide. A vague bedding is evident in the conglomeratic sediment and this is truncated by the band.

The band has a leucocratic character, but one corner contains a black, poikilitic-appearing mineral. This portion of the band was not included in the thin section but the black mineral was optically identified as tourmaline in temporary oil mount.

Thin Section:

The thin section was cut along the contact of the leucocratic band with the enclosing conglomeratic sediment. This contact is very sharp and shows no evidence of either chilling or baking of the sediment. The bedding which was noted in hand specimen is also evident in thin section and is truncated by the band which is oriented perpendicular to this foliation direction.

The granitic band consists of a granular intergrowth of quartz, plagioclase and microcline and is probably best termed an adamellite. Traces of biotite and muscovite are present as small flakes up to 0.5 mm in size. The biotite has an oxidised, reddish-brown pleochroic character and finely divided phyllosilicates (biotite or partially chloritized biotite) also form narrow fracture fillings within the band. All of the feldspar has a very fresh character, only locally showing incipient alteration to finely divided sericite flakes.

The conglomerate has a siliceous matrix, consisting mainly of quartz grains up to 0.1 mm in size, intergrown with cherty quartz and smaller amounts of feldspar. Large cherty rock fragments and at least one basaltic rock fragment and a few schistose-appearing rock fragments are also present in this area. Calcite is locally present in the conglomerate as polycrystalline aggregates which are concentrated marginal to some fragments and also are locally concentrated along the contact with the granitic band.

This granitic band is considered to represent a vein which has intruded the conglomerate. The strongest evidence for such an origin is the orientation of the band across the general bedding direction and the sharp truncation of the bedding by the band. There is no evidence of marginal chilling of the vein, nor baking of the host sediment, but the narrowness of the vein as well as its relatively low temperature late magmatic to pneumatolytic or hydrothermal character as indicated by the presence of poikiloblastic tourmaline would mitigate against the development of such features.

APPENDIX II Results of chemical Analysis
Amdel Reports AC 4450/78 and AC 258/79

The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662, telex AA 82520

Pilot Plant Osman Place, Thebarton, Sth. Aust Phone Adelaide 43 8053
Branch Offices: Perth and Sydney Associated with: Professional Consultants Australia Pty Ltd
Please address all correspondence to Frewville. In reply quote:

ac 1/14/0 - 4450/78

NATA CERTIFICATE

25 July 1978

The Director-General,
Department of Mines & Energy,
P O Box 151,
EASTWOOD SA 5063

A3/78 & A5/78

REPORT AC 4450/78

YOUR REFERENCE:

Application dated 14 June 1978

LOCATION:

Koonamore Area

IDENTIFICATION:

As listed

DATE RECEIVED:

14 June 1978

Enquiries quoting AC 4450/78 to the Manager please

D. K. Rowley Manager Analytical Chemistry Division

20X

for Norton Jackson Managing Director

REPORT AC 4450/78

x = not detected at the limits quoted

Results in ppm unless otherwise stated. Detection limits in brackets.

						para and a result of the terminal of the termi				
0-	Cu	fЬ	Z_n	Ay	As	Mo	Mn	Ba	6	Ni
Sample No.	(1)	· (1)	(20)	6.1)	60)	(3)	1(10)	(200)	(5)	(5)
1222/78	1100	1100	1 1510	101-13	i i ix	- X	8100	-500 -500	140	1150
. 3	7- 0- 0-	1170	1100	101-13		אווו	1:500	300	140	1 17kc
4	121010			101-13		!!!x	3101010	1210°C	186	130%
. 5	200		1 1510	101-12		120	2000	141010	1 66	100
.6	0 211		- 111010	01.12		111/2	20000	1360	170	1150
7	1150	1 1610	111010	101.12			1000		150	Bloc
8-	1150	1300	111010	61.12	1	;; ¦x	3'0'0'0	Islaic	100	1150
9	1100	1 1710	1 1510	101-12		X	1000	600	150	ग्वा
230.	0-0	1200	1 1710	p - 2	計以	1 1 1	10000	41010	1 60	100
352	1 50	12010	1 1 10	01.14	1111	ו ו ו ו	1.000	1600	1 66	1/0/0
3	1810	1410	1 - 1 - 0 - 0 - 0 - 0 - 0 - 0	101.12		1 I	300	400	: 115	150
4	100	1 1710	1 1310	101 .12		; ; ; ; ;	11500	4.0.0	1116	156
5	1100	-10	1 13 10	07		;	1500	isiob	130	। इठ
6	1200		1100	101.13		, 1 1	3'000	dos	100	1201c
	1150	150	1 1 1	101.12		!	7'0'0	1760	17 1510	186
8	150	1 70	1 1710	101.13		1 : 1 1 X	1 1 1	. 141010	: 40	; ;7;c
9.	100	1 70	1 1710	101.13		1 ! 1 1 ! X	10000	c व द	1:6:0	: 17 12
60	11/2/0		1 1710	101.13		1 1 1		مامای	1150	150
	1100		1 1510	101.13		· ; ; ; ; ;		اعاهای	1115	1 17 k
2	1 170	160	1 150	101.12		; ; ; _X	0.001	द्यवश	1410	11/5%
3	; ¦3¦o	1 1310	1 110	101.13		1 13	10000	3410	ार्य ।	1150
4	: 16p	1 40	111010	01.13	1111	:	10000	1600	1 36	100
. 5	1 1810	1 80	計以	61-13	i i ix	: ; ; x	500	131010	120	176
6	1 150	1 1610	1 150	01.13		:	0,00,1	4100	1 1310	186
7	1100			101.18		!	00001	141012	1310	1 E'c
9	1 1810	1100	1 1310	0.12	1 1 1	; ; ;x	161010	Sole	ं हे	11010
3 69	100	1300	121010	101.12			21000	1500	1 17 0	115/6
Docul	tc 03% C0	mi-aunt	itatiwa	Elemente	annarant	Tar meaca	nt in cor	contratio	one of eco	onomic

Results are semi-quantitative. Elements apparently present in concentrations of economic interest should be redetermined by an appropriate accurate applytical technique

REPORT AC 4450/78 x = not detected at the limits quotedResults in ppm unless otherwise stated. Detection limits in brackets.

•			4.						Juckets.	
Sample	au	Pb	Zn	Ag	As	No	Mn	Ba	6.	Ni
No.	(1)	(1)	(20)	(0.1)	(50)	(3)	(10)	(200)	(5)	(5)
A310/78	1510	1/170	1310	101-14	1111		19100	13610	l sc	110%
	1 36	1 1410	1114	101-12		1 1 1	13100	1200	1115	1104
_ 2	130	1:150		101-13	1111	1 1 1	1300	1200	115	**********
3	1 136	1 1410		101-12	1111	• ! 1		1300	1110	
	1 36	1 166		1 -		1115		1400		1 1710
5	1 186	1 1810	1 1510	61-13		; ; ;	. 1		 	: 1710
6	1 1510	1 1710	1 1310	61-12	1. 1 X		1 1 1	400		
_ 7	1 1510	156	1 (12/0)	61.12	1111	1114	5'0'0	121010	 	
8	1 80	1.60	1111	61.13		1113	13100	15/20	1 1210	1100
9	180	176		101-13		1 1 1	1000	izbio	1 1310	1 1710
80	ें हैं।	176	1 1510	101-12		1		400	: 1610	1100
	1.60	130	1111	101.12	x	: ! !x	1700	4,0,0	1 120	: 160
2	1100	1 610	1 1310	o - 3		:	2000	1700	: 710	120 k
3	1100	sto	1 1310	101-12			20000	Balo	:40	1100
4	1100	100	1 310	101.12	x		20000	600	1 1710	1/5-10
5	166	1 1810	1 15%	101.12		111	1500	171610	: 1410	1 20
6	1 1810	1 20	1 50	101-11		; ; ; ; ; ;	1:0:06	isidio	1 1310	: 72
7	160	1 18/0		101.11	i i ix	1	10000	14010	: 40	(30°C
8	1 20	1 1710	1 1510	101.13	1 1 1	:	1500	17010	115	176
9	111010	1 1010	131010	101.13		! ! ! _X	10000	171010	1 1710	1/1010
90	1710	12100	111510	101.13	1111	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0000	400	1 1610	l isic
,	111010	1100	111510	101.12	x	: 1 13	2101010	18018		(256
, 2	1/1010	1100	121010	101-11	x		10000	61616		ilioic
3	111010	1100	1 1310	10112	11.1%	7 7	1000	0,95,		1100
4	1 1810	140		12:19		:	13160	1400		1:1310
5		1100	11516	61.12		! ! !X	ishlo	D190	: ¦బ్లం	150
396	1 1610	1 1510		61.12	<u> </u>	1	500	1111	1 2 0	140
Resulte	s are sem	i-count is	tation i	Flourante						

Results are semi-quantitative. Elements apparently present in concentrations of economic interest should be redetermined by an appropriate accurate analytical technique.

REPORT AC 4450/78

x = not detected at the limits quoted

Results in ppm unless otherwise stated. Detection limits in brackets.

				~~~~~						
Sample	Gu	ρь	2m	Ag	As	No.	Mn	Ba	6	Ni
No.	(1)	(I)	(20)	(0.1)	(50)	(3)	(10)	(200)	<u>:(5)</u>	(5)
1397/78	111010	1/1010	1 176	biril	:::\x	1 1 1 1 X	1000	15/016	14	100
8	1/20	1810	1/1010	61:11]	! ! !x	1000	1400	150	991
9	1100	1 710	1 1 1 1 1 1 1 1 1 1 1 1 1 1	61.12				1600	1 25	186
400.	1100	1170	136	11:10		$: : :_X$	500	161010	1 75	ું છે
231	150	1150	. 1 136	b . 2	1111	; ; ; X		içiolo	1 20	1 186
2	1100	1 1710	1 136	61.12				וסוסודו	130	700
3	111010	1 1710	130	61.12		; ; ; ; ;	15000	51010	136	1176
4	1 132	1 170	1 150	id.12		iii _x	500	Isbolo	1 40	येव ॥
5 .	1 1810	166	136	0.11	+ 1 1×	!!!X	spa	400	1410	150
6		1 1610	400	61:11		i i ix	17:00	400	1 12:0	1710
7	1100	اطمالا	1112			1 1 X	17100	14:00	: 50	Hisic
8	1 50	1176		9:2	$\frac{1}{1}$, ! ! ! !5	460	300	1115	Zioic
9	7 c	131010		p¦ ·¦z		: ! !X	מסודו	366	: 120	11000
40	1 550	12010	1 136	pi.it		1 1 13	dor	600	: 12:0	1 710
241	1 1710	1200	1 1310	Hilz	i x	11 1 _X	14:00	יסוסורי	116	150
5090	1122	166		01:12		:	400	,800	; 1215	11 1570
. 1	1/10/0	150	1 1 1 7X	bi. 12		1 1 1	व्यवहः	1800	1 12:5	11 510
2	120	1100	150	101.12	1111	٤¦	300	181810	; 12;5	11100
3	11.00	100	1 1310	19:12		.;;;;	1400	17'00	1115	11150
4	11-10	1 151	111	p 1 2		; ; ; x	25100	499	136	اعاماد
5		l Isla	111	ph:12	1 1 1 1 1 1 1 1 1 1 1 1	!	1 101010	Blo!O	136	; ;7;2
6	1/13	scie	1	Phila		1110	7100	6:010	; ;z 5	Soic
7	;	100	1 1310			1111	41010	1200	115	1 13%
8	111010	176	$ \cdot \cdot _{\mathcal{X}}$	191.12		1 1210	171010	1600	1 120	1 166
9	1166	1 1710	1 1310			: : : : : : : : : : : : : : : : : : : :	:5'0'0	4190	1115	140
5100	1/10/0	160	1 1310	14:11		! ! !y	110810	500	: 115	1010
A 5101/18	1120	1100	! Islo	bi: 1		1 ix	Siois	800	1:15	1 160

Results are semi-quantitative. Elements apparently present in concentrations of economic interest should be redetermined by an appropriate accurate analytical technique.

FOR	JOB 4450/78	Results in ppm	n unless o	therwise	stated	ВАТСН	NO. /	/2
TT	· Sample No.		Au					
1	A 222/78		< 0.05					
2	223		∠ 0.05					,
3	22.4		∠ 0.05					
4	22.5		<0.05			- 1	:	
5	STO							·
6	226		60.05					
7	227		⟨0.05					
8	228		(0.05					
9	229		∠0.05				•	
10	230		40.05					
11	231	•	60.05				·	
12	232		(0.05					
13.	233		40.05					
14	234		<0.05	-	•			
15	235 x		<0.05					
16	A 236/78		40.05		•		: •	<u>:</u>
17	A 237 /78		<0.05				•	
18	238		₹0.05		•		•	
19	A 239/78		<0.05			.		
20	235 x							
FOI	JOB 4450/78	AMDEL A Results in pp				BATCH	NO. 2	2
TT	Sample No.	,	Au				ļ	
1	A 240/78		∠0.05			-	<u> </u>	
2			<0.05			1		
3			40:05					
4	509/		40-05					_
5	5092 x		40.05				. %	
6	5093		40.05	<u> </u>				
7	5094		40.05					
8	<u>.</u>		40.05				· · · ·	
9			10.05		<u> </u>	1	-	

< 0.05 5097 10 <0.05 5098 11 (0.05 5099 12 <0.05 5100 13 A 5101/78 A 352/78 <0.05 14 **40.05** 15 STO 16 (0.05 353 17 <0.05 354 18 A 355 /78 5092 <0.05 19 20

	FORM	JOB 4450/78 Re	esults in ppm unless otherwise sta	ted BATCH NO. 3/4
-	TT	Sample No.	Au	
بر موجه	1	A 356/78	⟨ 0.05	
-	2	357	(0.05	
2 .	3	358	(0.05	
	4	359	(0.05	•
	5	STO		
-	6	360	(0.05	
-	7	361	(0.05	
•	8	362	(0.05	
-	9	363	(0.05	
	10	364	<0.05	
	11	365	. (0.05	
•	12	366	(0.05	
	13	367	K0.05	
	14	. 368	K0.02	
•—	15	369 x	(0.05	
	16	. 370	(0.05	
-	17	371	(0.05	
•	18	372	40.05	
	19	A 373/78	⟨0.05	
-4	20	369 x		
			AMDEL ANALYTICAL SERVICE	
-	FORM	JOB 4450/78 Re	AMDEL ANALYTICAL SERVICE	BATCH NO. 4
	TT	JOB 4450/78	Sults in ppm unless otherwise state	BATCH NO. 4
	TT 1	JOB 4450/78 Re Sample No. A 374/78	Au Coo5	BATCH NO. 4
,	TT 1 2	JOB 4450/78 Re Sample No. A 374/78 375	Au Coo5 Coo5	BATCH NO. 4
54	TT 1 2 3	JOB 4450/78 Sample No. A 374/78 375 376	Au Au Coo5 Coo5 Coo5	BATCH NO. 4
	TT 1 2 3 4	JOB 4450/78 Sample No. A 374/78 375 376 377	Au Coo5 Coo5 Coo5 Coo5 Coo5	BATCH NO. 4
	TT 1 2 3 4 5	JOB 4450/78 Sample No. A 374/78 375 376 377 378 x	Au Coos Coos Coos Coos Coos Coos Coos Coos Coos	
59	TT 1 2 3 4 5 6	Sample No. A 374/78 375 376 377 378 X 379	Au 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05	
54	TT 1 2 3 4 5 6 7	JOB 4450/78 Sample No. A 374/78 375 376 377 378 X 379 380	Au 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05 4 0.05	
**	TT 1 2 3 4 5 6 7 8	JOB 4450/78 Sample No. A 374/78 375 376 377 378	Au Coos	
**	TT 1 2 3 4 5 6 7 8 9	JOB 4450/78 Sample No. A 374/78 375 376 377 378 X 379 380 381 382	Au Au	
54	TT 1 2 3 4 5 6 7 8 9 10	JOB 4450/78 Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383	Au	
**	TT 1 2 3 4 5 6 7 8 9 10 11	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384	Au Au	
**	TT 1 2 3 4 5 6 7 8 9 10 11 12	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384 385	Au Au	
	TT 1 2 3 4 5 6 7 8 9 10 11 12 13	Sample No. A 374/78 375 376 377 378 379 380 381 382 383 384 385 386	Au Au	
	TT 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384 385 386 STO	Au Au	
*	TT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384 385 386 STO 387	Au Au	
	TT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384 385 386 STO 387	Au	
	TT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384 385 386 STO 387 388 388 388	Au	
	TT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Sample No. A 374/78 375 376 377 378 X 379 380 381 382 383 384 385 386 STO 387	Au	

, EODU 6	JOB 44 7/18	Results in ppm unless	otherwise stated	BAICH NO. 3
FORM 6		4		

- FORM	1 0	•	يد بنسب سين بن جيري		
TT	Sample No.	Ay			
1	A 392 / 78	< 0.05			
2	393	< 0.05			
3	394 X	< 0.05		.,	
4	395	₹ 0.05			
5	396	10.05	•		
6	STD				
7	397	< 0.05			
8	398	< 0.05			
9	399	40.05			
10	A 400/78	< 0.05			
11	394 x	•			
12	BLNK				<u> </u>
13	CODE	C 3			
14				``	
15					
16					
17					, , , , , , , , , , , , , , , , , , ,
18					•
19				•	
20					

12/4/

PNP

The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662, telex AA 82520 Pilot Plant: Osman Place, Thebarton, Sth. Aust.
Phone Adelaide 43 8053

Branch Offices: Perth and Sydney
Associated with Professional Consultants Australia Pty Ltd
Please address all correspondence to Frewville.
In reply quote:

AC 1/15/0 - 258/79

•12/05/0087

NATA CERTIFICATE

19 September 1978

A3/78

The Director-General,
Department of Mines & Energy,
P O Box 151,
EASTWOOD SA 5063

REPORT AC 258/79

YOUR REFERENCE:

Application dated 13 July 1978

LOCATION:

Orana Hill area

IDENTIFICATION:

As listed

DATE RECEIVED:

18 July 1978

Enquiries quoting AC 258/79 to the Manager please

D. K. Rowley
Manager
Analytical Chemistry Division

for Norton Jackson Managing Director

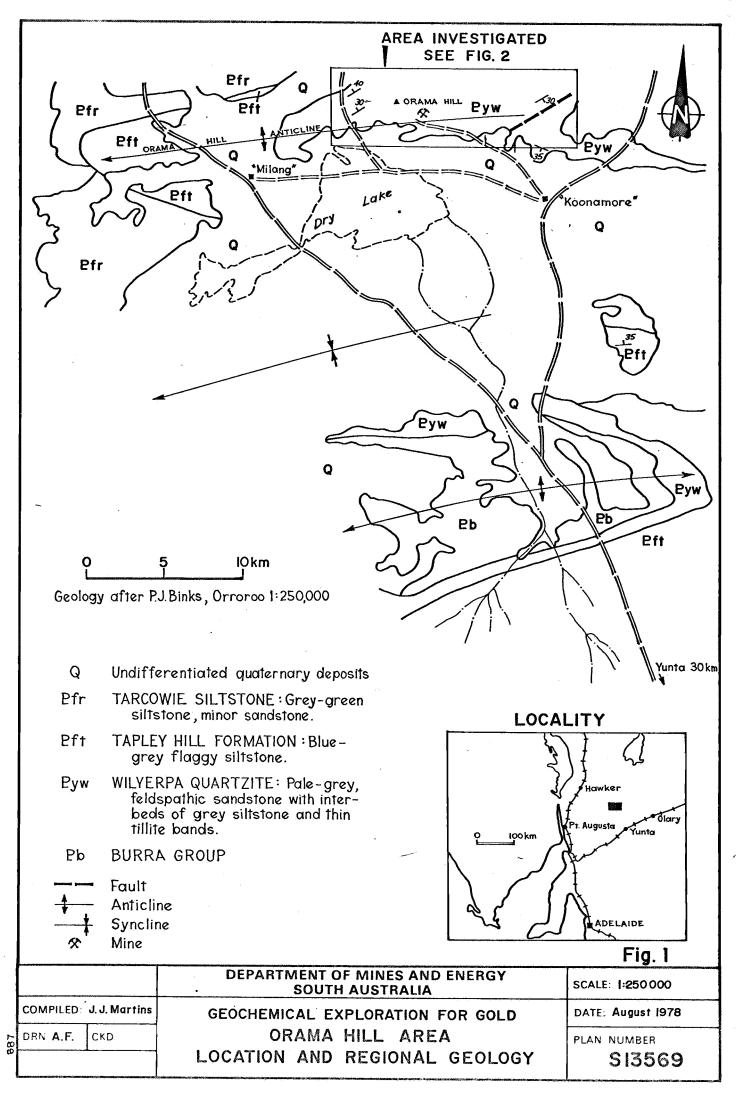
REPORT AC 258/78 x = not detected at the limits quotedResults in ppm unless otherwise stated. Detection limits in brackets.

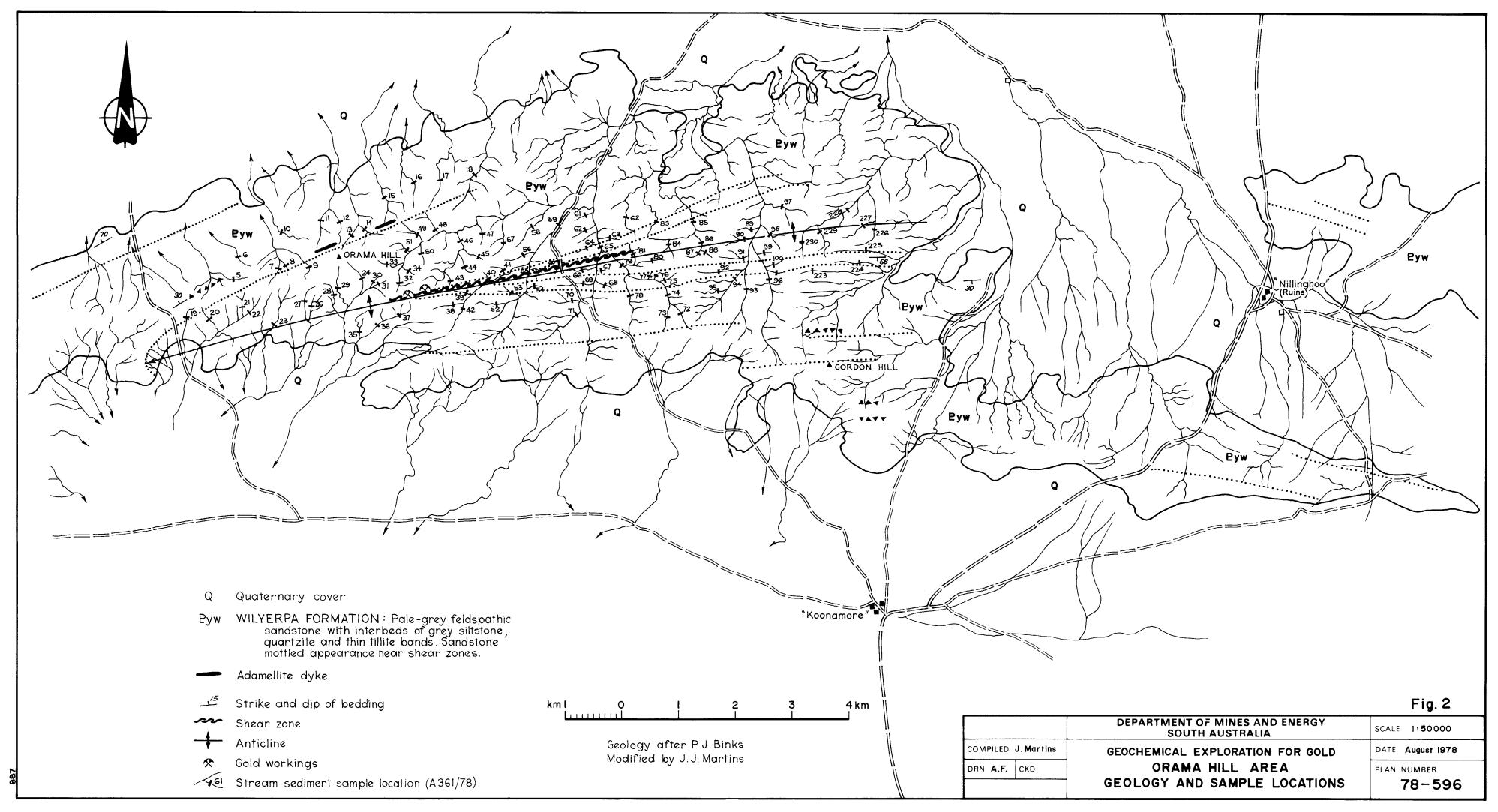
				i T	1	[_	-	Towns towns	1
Sample	Cu	<i>የ</i> ኔ .	2n	Ag.	As	Мо .	Mn	Ni	6	Ba
No.	(V)		(20)	(0.1)	(50)	(3)	(10)	(5)	(5)	(200)
A 305/78	111	1 1510	1.1610	101.13			٥٠٥١٤١	180	1 1 1 1 1 1 2 1 0	1111
6	1100	160	1 1710	10.13	$ \cdot \cdot _X$	1 1 1 _X	13100	1 1810	1 1210	12000
7	1 1810	1 1 1 1 1510	1/1010	101.12		$ \cdot \cdot _X$	1400	1100	1115	$ \cdot \cdot _X$
8	1 1510	1 1215	1 1210	101.12	X	111/2	250	140	1 110	\vdots
. 9	1 1 1 0	1 150	- 1 1310	101.12		$ \cdot \cdot _X$	250	1 30	11:5	1114
10	180	1 1510	1510	1113	X	$ \cdot \cdot _X$	250	150	1110	$ \cdot \cdot _X$
,	11100	111	1 1 1 1 1 5 10	111		$\left\{ \left\{ \right\} \right\} _{X}$	111	160	1115	1 1 1 _X
2	1111	111	1 1 10	10.12	X	1 1 1	13'0'0	1100		*, , ,
. 3	1 1810	1 1 1	1 1 1	1 1 1			12100	1 1 1	1 110	
4	111	1 1 1	1 1 1	111	 x	1 ! ! X	1:1	1 1 1	1115	
5	111	1170	1 1510	101.1					115	
6	1 70	1 1310	1 1710	101.12			13100	140	1110	111
7	1 1 1	1 1 1	1 1 1	111		. 1 1	121510	1130	1110	
	1 80	1111		10.13		1 1 1	13'0'0	1 60	11,15	12'0'0
9	1100	1 1 1	1 1 1	1 1 1 2	1 1 X	1 1 13	500	1 180	ادا ا	1 1 1
20	1170	1 1 1	1 1310	01.12	X	1111	250	1 150	1110	;; i;
,	111	1100	1 1 1	10.12		1	1 1 1	1160	1120	13,00
2	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	13100	1100	115	11 1
3	1110	1 1 1		101.12		: 1 13	1400	1 1610	1 120	1118
4	111	1 1 1 1 1510	1 1 9 0	111	1 1 1	;;; _X	13'010	1 1610	1 120	
5	0 81.1	111	1 1 1	101.13			121510	1 13.0	1.110	
6	1 1510	1 1510	1 1210	10.11		!	121010	1 1/5	5	12'0'0
	111010	1140	$ \cdot \cdot _X$	101.12	<u> </u>	: ; ; _X	400	1 1610	1110	200
8	1 1710	1140	1 1510	101.11		:	250	1 40	1110	;
9	1 1710	1140	1 1310	101.11		:	12/5/0	1 1510	1115	<u> </u>
30	1 1510	1 13:10	111.	101.12	1 1 1 X	111 _X	12/010	140	1110	121010
A331	1 1810	1 1510	1 120	101.11	1114	1	121510	1 1510	1110	<u> </u>

Results are semi-quantitative. Elements apparently present in concentrations of economic interest should be redetermined by an appropriate accurate analytical reclaims.

REPORT AC $\frac{258}{78}$ x = not detected at the limits quotedResults in ppm unless otherwise stated. Detection limits in brackets.

·									rackets.	
Samp1e	au	РЬ	2,	Ag	As	Mo.	Mn	Ni	6	Ba
No.	(1)	(1)	(20)	(0.1)	(50)	(3)	1(19)	(5)	(2)	(200)
A 332	1100	1 1610	, 1 1310	10.11	; ; ; x	1 1 X	15100	1170	1 1 1 1 1 2 0	
3	1 1510	1 1810		10,11	i _X	1 1 1	12/5/0	1 50	1 110	111
4	1 80	1/1010	121010	101.12	_×	_X	1500	180	1 1310	
5	1 180	1 1310	1	1	l l l l x	; ; ; x	1600	1 1710	1 1/15	1 1 1
- 6	1100	150	. 1 50	 	X	; ; ; x	 	1100	140	יסובו
7	1100	160	1 40	101.11		, ; ; ,	400	1100	1 120	13101
8	111010	1180	40	101.12	1 1 1	1115	7'0'0	1100	1140	1201
9	1100	1 1510	1310	101.11		$ \cdot \cdot _X$	500	1170	1 115	أعاماد
40	1 1 1 0	1/1510	1140	101.11	X	!!!x	13'0'0	1 40	1110	1 1 1
	111010	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	101.11		111	1 1 1	150	1 16:0	14100
3	1 180	1100	1 1710	!!!x			5'0'0	200	125	·
. 3	1100	111		101.11	X	: X	1 1 1	1150	11:5	יט'ס'כ
4	1 1 1 1 18'0	11100	111010			$ \cdot \cdot _X$	400	1170	1115	111
5	1 1510	1115	1 1510	0-		1111	, ,	1 1115	; i ; x	
6	111010	1 1 1 1 1 510	1 1 1 1 0	101.11	1 1	3	13'0'0	1100	1 1310	16000
7	1/1010	1/00	1170	10.11		1 1 1	1600	1100	: :310	: i ix
8	1 1810	12010	 	id.ii		1 1 13	400	1 170	1115	אסיבי
9	1180	1 1710	1 410	!	1 1 1 X		400	1 1610	115	מסיבי
50	1 1810	סודו	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.11	i i i x	$\vdots \mid :_{X}$	13100	1 80	1115	206
A 351	1 1710	1 1 1 1 1 1 1 1 1 1 1 1 1	1110	10.11			500	1 1610	11/0	יסיס ובי
Sunfec.	1-11				777	111	1 1 1	1 1	-111	: : :
1 1 19	1 1 1]				:	; ; ;	1 1 1 .	: : :	:::
	, [[1 1 1					1 1 1	1 1 1	111	11:
	1 1 1	1 1 1	111	111			: ; ;	1 4 1	1 1 1	: : :
		1 1 1	1 1 1	1111	111	1 1	: : :	111	: : :	1 1 1
	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1	1 1 1	: ; ;	1 1 1
	: 1 <u>1</u> <u>1</u>		!!!!		1111	1 1 1	111		<u> </u>	111
Docul4			4	503		_	_			


Results are semi-quantitative. Elements apparently present in concentrations of economic interest should be redetermined by an appropriate accurate and the redetermined by an appropriate accurate accurate and the redetermined by an appropriate accurate accur


FORM	JOB 258/	1	<u> </u>	1		T	1	NO.//2	<u> </u>
TT	Sample No.			Au			-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ļ.,
11	A 305/78			<0.05					
2	306			<0.05	·		1		
3	307	<u> </u>		50.05			*		ļ
4	308			<0.05	·	1	1	<u>.</u>	
5	STD			<0.02					
6	309		 	<0.05	-		ļ		
7	310		:	<0.05			ļ		
8	311			<0.05				· · · · · · · · · · · · · · · · · · ·	ļ
9	312		 	<0.05					
10	313			(0.05					_
11	314			<0.05					
12	315			<0.05			. !		
13	316			<0.05					
14	317			50.05	·				
15	318	×		<0.05		* /	ļ		
16	319			<0.05					ļ
17	320			<0.05				····	
18	321			50.05		- /			
19	A 322/78			KO 05					
20	318	x					, ·		
FOR	JOB 258	,		L ANALYTICA			ВАТСН	NO.2	
TT	Sample No.			Au					
1	A 323/78			<0.05					
2	324			<0.05			1		
3	325		1	50:05					

FURN			
TT	Sample No.	Au	
1	A 323/78	<0.05	
2	324	<0.05	
3	325	50:05	
4	326 x	<0.05	
5	327	<0.05	
6	328	<0.65	
7	329	<0.05	
8	330	<0.02	
9	331	<0.05	· · · · · · · · · · · · · · · · · · ·
10	332	<	
11	333	50:05	
12	334	<0.05	
13	335	<0.05	
14	STD		
15	336	<0.05	
4 16	-337	<0.05	
17	338	<0.05	
18	339	<0 05	
19	A 340/78	50.05	-
20	326 x		

FORM	10 X > 0/11	Results in ppm unless	otherwise stated	BATCH	100. D
. TT	Sample No.	Au			
1	A 3141/78	<0.05			<u></u>
2	342.	<0.05			
3	343	<0.05			
4	344	<0.05			
5	345	<0.05		ļ	
6	STO				
7	346	50.65			
8	347	<0.05			
9	348 ×	50.05		<u></u>	<u> </u>
10	349	5005			
11	350	Ko:05		,	
12	A 351/78	<005			
13	348 x				•
14	BLANK				
15	CODE	C3		<u> </u>	
16					
17					
18					
19					
20					

*

