DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

GEOLOGICAL SURVEY

R/B 79/23

THE BRUKUNGA PYRITE MINE - DRILL HOLE ANALYSES AND MINE DEVELOPMENT PLAN INVENTORY

Ву

J. DREXEL

Rept.Bk.No. 79/23 G.S. No. 6142 D.M. No. 760/51

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

Rept.Bk.No. 79/23 G.S. No. 6142 D.M. No. 760/51

THE BRUKUNGA PYRITE MINE - DRILL HOLE ANALYSES AND MINE DEVELOPMENT PLAN INVENTORY

SUMMARY

The B.H.P. Co. Ltd. (Whyalla) has recently provided unpublished data on the now inoperative Brukunga Pyrite Mine. This report is designed as an inventory of these data to provide access to the mine development plans, as well as analytical data on two diamond drill holes cored from the Nairne Pyrite Member.

INTRODUCTION

The Brukunga Pyrite Mine, 35 km east of Adelaide (Fig. 1), was operated in 1955-1972 to provide sulphur for sulphuric acid manufacture during years of sulphur shortage. Quarrying was carried out by Nairne Pyrite Ltd., a company sponsored by the State government, and which comprised several Adelaidebased fertilizer companies, with the B.H.P. Co. Ltd. as managing agents.

Pyrite was quarried from Shepard's Hill, immediately west of Brukunga township, but ore reserves outlined by Mason (1966) extend semi-continuously for 1 km north and 8 km south of the workings (Downer Hill and Ironstone Ridge respectively - Fig. 2). Host rock to the mineralisation is the Nairne Pyrite Member, a syngenetic sulphide horizon, with a strike length of 32 km, at the base of the Brukunga Formation within the Kanmantoo Trough (Thomson, 1975).

As a result of a request by the South Australian Department of Mines and Energy, the B.H.P. Co. Ltd. (Whyalla geological office) has kindly forwarded mine development plans, geological cross-sections, and analytical data of two diamond drill holes.

These holes, 108 and 109, are located on Figure 2, and the analytical data are detailed in Tables 1 and 2. The geological logs for the holes (see Appendix) have been reprinted from Mason (1966). The development plans etc., now housed in Envelope Cylinder 3376 (Vols 1 and 2) within the department's record system, are referenced in Table 3. All data have been kept in the original British Imperial system units.

5.2.79

JD:GU

J. DREXEL

GEOLOGIST

REFERENCES

- Mason, M.G., 1966. Report on the Nairne Pyrite Deposit,
 Brukunga. S. Aust. Dept. Mines and Energy report
 66/119 (unpublished).
- Thomson, B.P., 1975. Kanmantoo Trough-regional geology and comments on mineralisation. <u>In</u>: Knight, C.L. (Ed.), <u>Economic Geology of Australia and Papua New Guinea</u>, 1, Metals. Australas. Inst. Min. Metall., Melbourne, pp. 253-254.

TABLE 1. NAIRNE PYRITES LTD. - BRUKUNGA D.D.H. 108 SEMI-QUANTITATIVE SPECTROGRAPHIC ANALYSIS (P.P.M.)

		···				· • · · · · · · · · · · · · · · · · · · 			
DEPTH (ft.)	Cu	Pb	Zn	Со	Ni	Ag	Au	Cr	V
73 - 80	200	600	1,500	80	100	2.5	<3	300	200
80 - 85	200	600	2,000	100	100	2.	11	300	300
85 - 90	200	600	2,000	100	100	2.5	**	300	300
90 - 95	250	1,000	1,000	100	100	5.	11	300	300
95 -100	250	800	1,200	100	100	3.	**	300	300
100 -105	250	1,200	2,000	60	60	4.	11	300	200
105 -110	250	8.00	1,200	80	80	3.	11	200	300
110 -115	200	500	1,000	80	100	2.5	13	300	300
115 -120	250	1,200	2,000	60	80	4.	-1.1	200	200
120 -125	250	1,200	1,500	80	100	5.	11	200	200
125 -130	600	800	600	100	120	3.	11	300	300
130 -133	500	1,000	1,000	100	120	4.	11	300	300
133 -140	800	1,500	300	100	150	4.	**	300	300
140 -144	600	1,000	150	100	150	3.	.11	500	400
144 -151	300	1,000	1,200	150	200	5.	.11	500	400
151 -155	150	600	400	80	120	2.	11	500	400
155 -160	200	600	1,200	120	150	5.	11	300	400
160 -165	200	600	1,000	100	80	5.	11	300	300
165 -170	200	1,000	1,000	100	150	6.	11	300	300
170 -175	200	2,000	2,000	70	60	6.	**	300	200
175 -180	200	600	1,000	7.0	60	3.	**	200	200
180 -185	200	1,200	1,200	100	100	5.	7,7	300	300
185 -190	250	2,000	800	120	100	8.	11	200	400
190 -195	250	800	800	200	250	8.	††	500	500
195 -197	250	600	600	150	250	5.	tt	200	400
197 -200	300	2,500	1,500	150	250	8.	ŤŤ	200	300
200 -204	300	1,500	1,500	250	300	8.	71	400	500
204 -206	200	800	3,000	100	200	6.	11	400	500
206 -210	250	800	800	80	150	4.	11	300	200
210 -215	250	2,500	2,000	70	100	10.	,11	300	150
215 -221	250	1,000	600	100	200	4.	11	300	300
221 -224	250	500	1,200	60	120	3.	11	300	300
224 -230	200	200	150	200	250	1.	*1	400	500
230 -235	200	2.00	150	100	100	1.	11	400	200
235 -238	200	300	40	80	100	1.2	1.1	400	300

AMDEL REPORT AN 832/68

TABLE 2. NAIRNE PYRITES LTD. - BRUKUNGA D.D.H. 109 SEMI-QUANTITATIVE SPECTROGRAPHIC ANALYSIS (P.P.M.)

DEPTH (ft.)	Cu	Pb	Zn	Со	Ni	Ag	Au	Cr	V
108 -110	300	1,500	1,500	150	200	4.	<3	400	300
110 -115	150	2,000	1,500	100	250	4.	11	500	300
115 -120	300	2,000	1,500	100	200	6.	1,7	100	250
120 -125	300	2,000	2,000	80	150	6.	11	100	250
125 -130	250	2,500	1,200	60	60	6.	11	300	250
130 -135	300	2,500	1,500	60	50	6.	11	200	400
135 -140	300	2,000	1,500	60	50	4.	17	200	250
140 -145	300	2,000	2,000	60	60	4.	11	200	200
145 -150	300	2,000	1,500	80	80	6.	11	200	250
150 -155	300	2,000	2,000	60	150	6.	11	200	400
155 -160	250	1,000	1,500	50	50	4.	11	250	150
160 -165	250	2,000	1,500	60	100	6.	1,1	300	200
165 -170	250	2,000	600	60	100	4.	11	300	200
170 -173	250	2,000	1,500	60	200	6.	,,,	300	200
187 -190	250	500	500	50	150	3.	11	300	300
19 0 -195	250	500	1,500	200	250	2.	17	500	600
195 -200	250	2,000	800	100	100	6.	11	300	500
200 -205	250	800	600	60	100	4.	ŢŢ	300	500
205 -210	250	600	600	60	80	3.	11	300	200
210 -215	250	200	600	60	100	1.	tt	300	400
215 -220	250	300	150	80	120	2.	tt	100	400
220 -224	250	300	400	120	120	1.5	11	300	500
224 -231	250	800	1,000	120	150	2.5	1,1	300	400
231 -235	250	600	1,000	120	200	4.	TŤ	300	400
235 -240	200	200	500	30	60	1.	1,1	300	150
240 -245	300	300	600	80	150	1.5	11	400	500
245 -250	300	200	400	80	200	1.5	τt	200	250
250 -255	250	100	1,000	120	250	0.5	ŢŤ	300	500
255 -257	250	100	30	50	80	0.3	11	600	500
257 -260	250	80	30	120	120	0.3	17	600	500
260 -265	250	60	60	120	150	0.3	11	600	500
265 -270	200	300	60	60	150	1.2	11	600	700
270 -275	200	200	150	80	150	0.5	11	800	700
275 -280	300	500	500	200	200	0.6	ţţ	600	600

AMDEL REPORT AN 567/68

TABLE 3: INVENTORY OF PLANS: ENV CYLINDER 3376

ENVELOPE PLAN NO.	PI	AN TITLE				DATE	COMMENTS
1	Geologica	al Cross-S	ections-	Nov'67			
2	11	ŧi	**	**	tt	11	Cross-Sections
3	**	ŧŧ	**	11	11	tr	Located in
4	t.	11	11	11	11	ff	RB 66/119
.5	Interpret	ed Geolog	y-Downer		+Transparency		
6	Outcrop 0	Geology -	Downer H		+Transparency		
7	Outcrop I	ocation P	1an - Do	March'68			
8		es & I.P ir Zone	Anomalie	Nov¹69			
9-15	V, Cr, Ni DDH 13 &	•					
16-22		n, V, Pb, Beevor sh		Oct'68			
23	I.P. Grid	l - Mt. Be					
24-25		metic & I Beevor sh					
26	Drill Hol	e location	ns - Iro	1.3.51			
27	Tailings	Dam Area	- Brukun	6.3.51			
28	Quarry P1	an - Nair	ne				
29	Face Plan - Shepard's Hill 1.7						
30	Face Plan	- Little	1.7.72				
31-35	Lode Cross-Sections-4700N to 5500S 13.3.52 1.7.72						
36	Economics	- Timmin	s Hill				
37	Pyrite:	Pyrrhotite	e Calcul	ation (Graph	13.2.52	
38		Pyrrhotite ngitudina				е	
39-40	Pyrite:	Pyrrhotite	e Transv	erse Gr	aphs	Feb ' 52	

APPENDIX

NAIRNE PYRITE MEMBER

LOGS OF DIAMOND DRILL HOLES 108 AND 109

(REPRINTED FROM RB 66/119)

_{пист}т з 3 °г. к

\$6076

AMPHIBOLITE

SCHIST

GNEISS-METASILT

GRANOFELS CALCSILICATE

PYRITE

KANMANTOO

3 % %

DATE 25th July 67 case lith July \$6076 a

114 E 1000 Bedding Trend . . AS CHMONEIT LOGGET BY

Breccia Zone

_ Major Joint

.... Altered Zone-

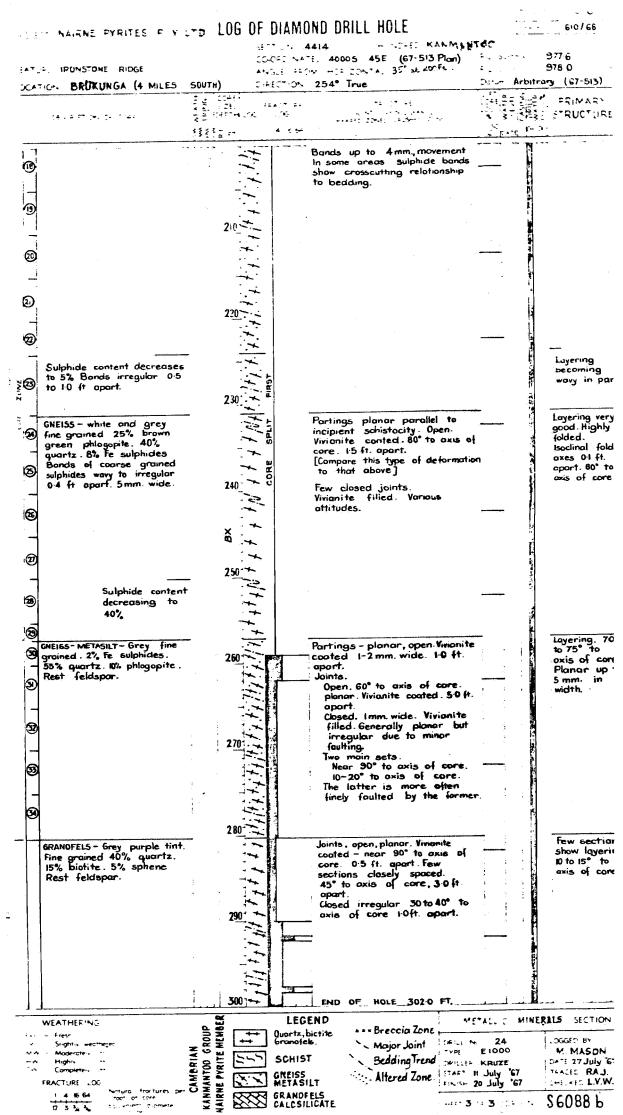
4 2 N M AND 4250 5 588 E - 1 ... 25° at 200 Fc . 270° Grid 260° True

1112 C 1112 4 M.S.L. Pt Adelaide

***Breccia Zone. Major Joint 1 2 E 1000 . Bedding Trend - ASCHMONEIT 4- 30th June 167 Altered Zone 1 - 11 th July '67

METAL C MINEPALS

28th July 67


M MASON

\$6076 ь ··· 3 - 3

LOG OF DIAMOND DRILL HOLE

NAIPNE PYRITES PTN LTD

SHEET 2 OF 3 DRG No SEORS

