DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

GEOCHEMICAL MAP COMPILATION - SERLE AREA

Ву

R.S. ROBERTSON

Rept.Bk.No.78/151 G.S. No.6112 D.M. No.105/78

. NOS
13642
-799
-799 -800
-800
-800 -801
-800 -801 -802
-800 -801 -802 -803
3

ટ

TABLES

Summary of Stream Sediment Surveys

Comparison of Previous Surveys & Resampled Areas

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

Rept.Bk.No.78/151 G.S. No.6112 D.M. No.105/78

GEOCHEMICAL MAP COMPILATION - SERLE AREA

ABSTRACT

Maps have been produced of the Serle 1: 63 000 sheet area showing the areas covered by seven company and departmental stream sediment surveys for Cu, Pb and Zn and the anomalies found. As a check on the previous surveys, nine areas of the Serle sheet were resampled and 297 stream sediment samples analysed for Cu, Pb, Zn, Co, Ni and Au (some samples were also analysed for Mn). The data from the check survey and areas of overlap of previous surveys showed that there were considerable differences in the detection of anomalies and in the background values obtained. The ratio of background values for different surveys also changes with locality. Coverage of the area for Pb and Zn is incomplete.

This study points to the need for caution in using the results of past stream sediment surveys. It is suggested that certain basic information should be required in reports supplied to the Department about geochemical surveys carried out in Exploration Licence areas. It is also suggested that there is a need for the routine use of standard samples and check samples in geochemical surveys to determine the reliability of the sampling and analytical techniques used.

The most prominent geochemical feature of the Serle area is the concentration of Cu anomalies in and on the margins of diapirs, particularly the Burr Diapir. The anomalies around the margins of the diapirs are often located in the Merinjina tillite or the base of the Tapley Hill Formation. Pb and Zn anomalies are located west of Mt. Ogilvie (associated with limestone of the Balcanoona Formation), in the area between White Well and Voca Vocana Hill (Tapley Hill Formation and Balcanoona Formation) and near Oodnapanicken Hut and Appealinna Well (Wonoka Formation and Brachina Formation).

INTRODUCTION

A large amount of geochemical exploration, particularly stream sediment sampling, has been carried out in the Flinders Ranges. The data from this work, contained in the Mines and Energy Department's file of company exploration and in various departmental reports, represent a large monetary investment and

a potential source of useful information. However it is difficult to gain any comprehensive view of the data in their present form.

As a pilot study, an attempt has been made in the Serle area to use the data from five past surveys to produce regional geochemical maps in the form of contoured rolling geometric means. The Serle 1: 63 360 sheet area (comprising the Burr Well and Serle 1: 50 000 sheet areas) was chosen for this study as it has a fairly complete coverage of stream sediment surveys. Of the areas not covered by the five previous stream sediment surveys, including areas of transported soil and part of the Gammon Ranges National Park, only an area around Mt. Ogilvie was considered worth sampling and this was done as a preliminary part of this project (Robertson 1977).

To try to overcome the problem of variability between surveys, small areas within each survey area were resampled as a check on the reliability of these surveys and to provide a quantitative basis for comparison of the surveys. This field work was carried out by the author and field assistant S. Kent.

GEOCHEMICAL COMPILATION

RESAMPLING

In this survey (survey S7 in Table 1) 297 stream sediment samples were taken in 9 different areas across the Serle area (Fig. 3). The areas were chosen to include both anomalous and background values from each of the previous surveys. Sample sites were located as close as possible to those of the original surveys.

The analytical work was carried out by AMDEL. Samples were sieved and the -180 micron fraction analysed by atomic absorbtion spectroscopy for Cu, Pb, Zn, Co, Ni, Au and some samples also for Mn. The analytical methods used are described in Table 1 and the Appendix.

Locations of samples and sample numbers for survey S7 are shown on Fig. 3. Cu, Pb and Zn results are shown on Figs. 4,5 and 6. Sample numbers and all results are listed in the Appendix. No Au values above the detection limit (0.05 p.p.m.) were obtained. Statistical data and a discussion of the results are contained in the following section.

TABLE 1
Summary of Stream Sediment Surveys

Survey No.	Company & Consultant (if any)	Reference	E.L.or M.L.	Number of Samples	Area	Size Fraction Analysed	Analytical Technique	Elements Analysed
S1	Dept. of Mines	RB 64/17	-	1064	260 km ³	-80 mesh	A.A.S. at AMDEL	Cu only
S2	For Andromeda Pty.Ltd. by McPhar Geophysics Pty. Ltd.	Env.1526	S.M.L.249	756	270 km ²	-80 mesh a few samples on -40 mesh.	A.A.S. following a hot 25% HNO ₃ leach for 1 hour on 0.25g sample.	Cu,Pb & Zn
S4	For Andromeda Pty.Ltd. by General Mineral Inv. Pty. Ltd.	Env.1526	S.M.L.429	280	130 km ³	-20 + 40 80 pound channel samples taken § split later.	A.A.S. AMDEL & A.A.S. Geochem. & Mineralogical lab. Pty.Ltd.	Cu,Pb,Zn
S3	For Southern Cross Expl. & Boolooroo	Env. 1272	S.M.L.366	1653	400 km^2		As for S2.	Cu,Zn,Pb
	Mining Co. by McPhar Geophysics Pty.Ltd.	Env.1339	S.M.L.385	(only819 for Pb)		-80 mesh, some	<i>,</i>	(only 819 for Pb)
S5	For Mt. Rose Mines Ltd. by McPhar Geophysics Pty. Ltd.	Env.852	S.M.L.132	2232	360 km ²	-80 mesh?	A.A.S. following a hot HNO ₃ leach	Cu,Pb & Zn
S6	Dept. of Mines (1977)	RB 78/23	· · · .	144	20 km ²	-80 mesh (-180 microns)	AMDEL A.A.S. analysis schemes C_1 & C_3 0.5 gm sample wt. C_1 : hot perchloric C_3 : aqua-regia	Cu,Pb,Zn,Co, Ni (some for Mn) Au
S7	Dept. of Mines (1977)	This Report		344	9 areas 40 km² total	11 11	"	11

.•,

TABLE 2

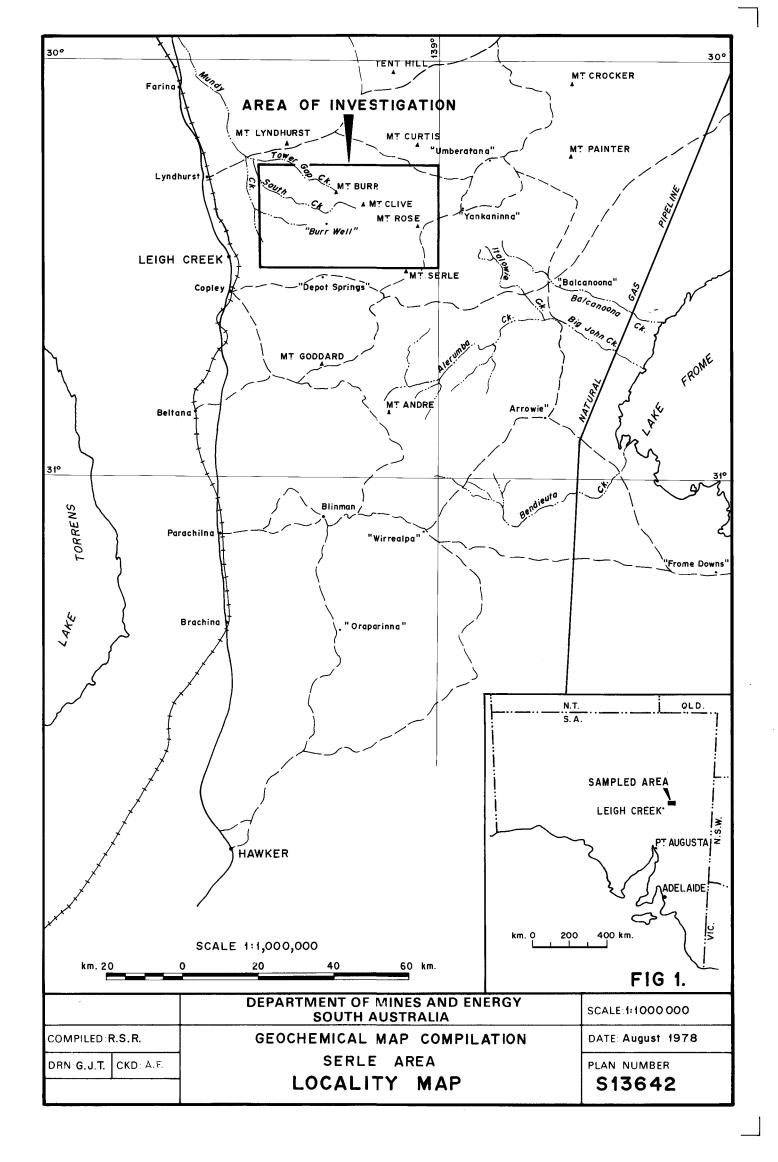
Compasson of Previous Surveys & Resampled reas

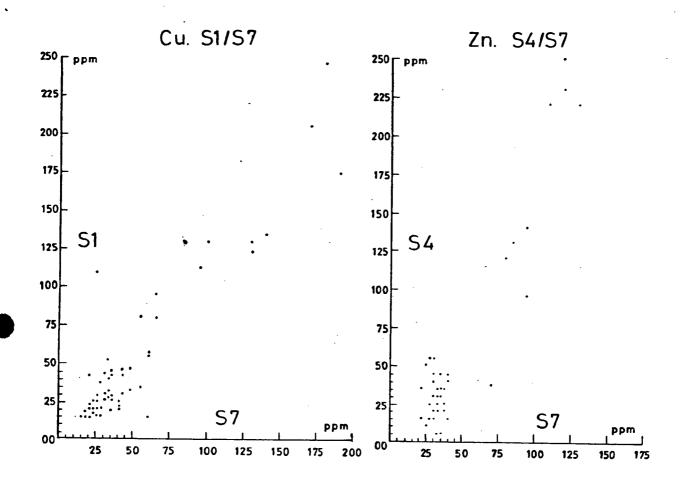
Area	Survey	No. of S	camples	Mean Cu		Values (p.p.m.) Pb	Zn
	S7 (Dept. of Mines 1977) S1 ('' '' 1967) Anomalous Values S7 S1	56 56		54.6 56.0 120.0 (16 va 123.0 (17 va	values)	14.5 - 95 (1 value)	29.8 - 75 (2 values)
	S7 (Dept. of Mines 1977) S2 (Andromeda) S4 (Andromeda) Anomalous & Sub-Anomalous Values	42 42 42 57 52 54		26.6 16.4 44.6 52.5 (4 val	lues)	37.5 (4 values)	47.6 30.6 61.7 102.5 (10 values
	S7 S3 (Boolooroo Mining Co.)	46 46		35.1 32.6		16.5	56.6 43.5
4	S7 S3	13 13		92.1 61.9		15.2 13.3	36.1 23.4
	S7 S3	34 34		26.1 21.9		19.6 29.6	60.6 60.0
	es	25 25 S7 118 S3 118 S7 S3		29.9 16.4 37.5 29.3 163.9 (9 val 109.2 (13 va	lues)	30.4 34.1 20.1 (76) 28.0 66.1 (8 values) 61.4 (8 values)	70.6 64.2 58.5 50.5 92.5 (4 values)
	S7 S5 (Mt. Rose Mines)	32 32		23.7 26.9		12.7 27.2	39.0 65.3
	S7 S5	32 32		32.2 26.6		9.0 57.2	19.1 28.4
9 8	S7 S5	35 35		24.7 15.9		16.0 33.1	60.3 51.9

- means not analysed.

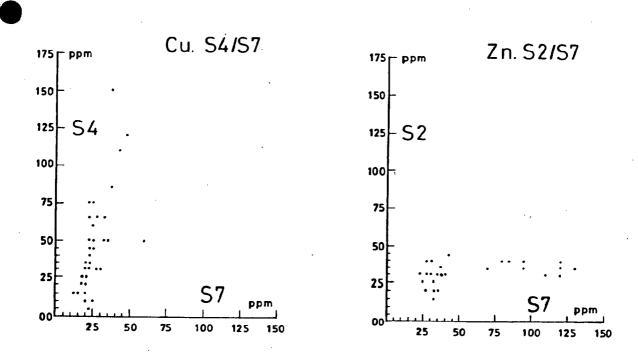
PREVIOUS SURVEYS

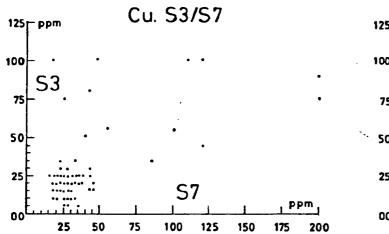
The stream sediment surveys carried out on the Serle area have been summarised in Table 1. Samples were collected by the Department (S1, S6 and S7), McPhar Geophysics Pty. Ltd. (S2, S3 and S5) and General Mineral Investigations Pty. Ltd. (S4). Analytical work was carried out by AMDEL, McPhar Geophysics Pty. Ltd. and Geochemical and Mineralogical Laboratories Pty. Ltd. Survey S4 was a resampling of part of an area already covered by S2 during the term of the same S.M.L.


Figures 6,7 and 8 show the area covered by each of the surveys for Cu, Pb and Zn. The anomalous values obtained in each survey are also shown. A value of about twice the background was used as the threshold for the anomalous values. Note that although coverage of the map area is almost complete for Cu, coverage for Pb and Zn is much less complete.

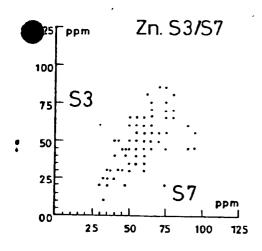

Maps of contoured rolling means for Cu, Pb and Zn are not included in this report as intended because the apparent inconsistent quality of the surveys made their production impractical. The problems are discussed below.

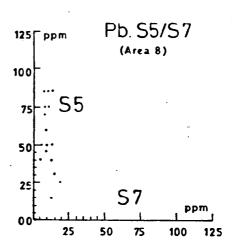
Comparison of Individual Samples


The sample sites of the resampling survey (S7) were chosen to correspond to those of the previous surveys. Examples of scattergrams of results for corresponding samples are shown in Fig. 2.


Some correlation between different surveys is evident in a few cases (e.g. S1/S7), but for most there is little or no correlation (e.g. S3/S7 - Cu, Pb and Zn). This lack of correlation may be due simply to slight differences in sample site. Where some correlation is evident anomalous and sub-anomalous values are present.




SCATTERGRAMS OF EQUIVALENT SAMPLE VALUES FROM DIFFERENT SURVEYS



SCATTERGRAMS OF EQUIVALENT SAMPLE VALUES FROM DIFFERENT SURVEYS

However a problem is evident in the plots of S2/S7 - Zn S3/S7 - Pb, and S5/S7 - Pb. Here higher values in one survey have no corresponding higher values in the other survey. Comparison by Areas

This section compares the previous surveys with the resampled areas (S7) and other surveys where these overlap. The areas referred to are shown on Fig. 3.

Table 2 compares, for each area, the data from previous surveys with that for the same sample sites from survey S7. Anomalous values obtained in each survey are also compared for some areas.

In area 1 the means for Cu for surveys S1 and S7 are similar and the anomalous values correspond well both in location and magnitude. Pb and Zn were not analysed in S1.

For area 2 the differences between the surveys (S7, S2, S4) are quite marked. The sampling method in S4 was completely different to that used in the other surveys; 80-pound channel samples were taken across the stream bed, split in the laboratory, sieved and the - 20 + 40 # fraction analysed. S4 produced higher mean values for Cu, Pb and Zn and more Cu and Pb anomalies than S7; however the anomaly/background contrasts of the two surveys are similar and S7 detected the same anomalous areas as S4. By contrast survey S2 although using the same sampling method as S7 was ineffective in detecting the anomalous areas. Reasons for this are not known.

Areas 3,4,5 and 6 are all covered by the same survey (S3). Pb was not analysed in area 3 in survey S3. Table 2 shows that mean values for Cu and Zn are mostly higher in S7 than in S3 but Pb is higher in S3. However the ratios of mean metal values in the two surveys changes quite markedly in different areas. There is good correspondence in the anomalies obtained in S7 and S3. The

presence of anomalous Pb values in areas 5 & 6 where there are only marginal or sub anomalous Zn values, emphasizes the value of analysing for at least Cu, Pb and Zn.

Areas 7,8 and 9 all lie in the area of survey S5. As can be seen in Table 2 the ratio of mean metal values between surveys S5 and S7 varies considerably between areas. In area 8, in particular the Pb value obtained in S5 (57.2 p.p.m.) is considerably higher than that for S7 (9.0 p.p.m.). The Pb value in S5 is considerably higher than the Zn value; this is the reverse of the situation for S7 and of that for other areas. A number of anomalous Pb values are present in survey S5 in area 8 but there are no corresponding anomalous Pb values in S7 although both surveys have coincident Cu anomalies in the area (in the vicinity of the Apex Mine). The inconsistency between the two surveys may be caused by the differences in acid leaches used or it is possible that the Pb and Zn results have been reversed at the drafting stage in survey S5.

DISCUSSION

It was decided the production of contoured rolling mean maps was impractical because of the apparent inconsistent quality of the stream sediment surveys. This inconsistency is indicated by the lack of agreement between surveys in areas of overlap. The background values obtained often differ considerably and the surveys also differ markedly in their detection of anomalies. The resampling of portions of previous surveys (S7) cannot be used to provide a quantitative basis for comparison because the ratio of mean values for the old and new surveys changes in different areas.

APPRAISAL OF AREA

GEOLOGY AND MINERALISATION

The geology of the map area (Fig. 2) is shown on the Serle 1: 63 360 geological sheet (Parkin et al. 1953) and the COPLEY 1: 250 000 geological sheet (Coats et al. 1973). The geology of the area has also been described by Reyner and Pitman (1955) and Barnes (1970).

The northern half of the Serle area consists of Adelaidean sedimentary rocks folded in an east-west trending elongated dome. In the centre of the dome is a zone of complex deformation. Coats (1973) considers this zone to be diapiric (Burr Diapir) and Barnes (1970) considers it simply a crush zone (Burr Crush Zone). Rocks of the central zone are probably mostly brecciated Burra Group with some blocks which possibly correlate with the Callanna Beds of Willouran Age. Igneous rocks occur in the crush zone in the form of micro-diorites, diorites, micro-gabbros and amygdaloidal basalts. Sedimentary rocks of the Burra, Umberatana and Wilpena Groups occur in normal stratigraphic sequence around the Burr Diapir.

In the southern half of the <u>Serle</u> area folded and faulted rocks of the Umberatana and Wilpena Groups predominate. Cambrian rocks are present north of Bunyeroo Hill in the south-west corner of the area. Small diapiric structures are scattered across the southern part of <u>Serle</u>.

Known mineralisation in the Serle area mostly consists of small Cu mines associated with diapirs. Mines are located both within the diapirs and in the rocks on the margins of the diapirs. Around the Burr Diapir mineralisation occurs persistently in the Merinjina Tillite (Forbes, Coats, Preiss - in preparation) and the base of the Tapley Hill Formation. The copper mineralisation generally occurs in quartz and carbonate veins as secondary copper carbonates and oxides and lesser sulphides. The larger copper

mines in the area include the Federal, Victory, Broken Range, Paull's Consolidated, Mt. Burr, Nichol's Nob and Mt. Rose Mines.

Several small copper shows are located in the Bunyeroo

Formation north of Mt. Serle. Small copper and lead diggings
occur in the Wonoka Formation in the vicinity of Oodnapanicken

Well. Small alluvial goldfields occur at Boolooroo and Mt.

Ogilvie. At Mt. Ogilvie gold, copper, nickel and cobalt mineralisation also occurs in quartz and carbonate veins in shales of the

Tapley Hill Formation.

DISCUSSION OF GEOCHEMICAL FEATURES

Anomalous values obtained in each survey are shown in Figs 8,9 and 10.

Most Cu anomalies are located in areas where some Cu mineralisation is already known to occur. Numerous anomalies occur within the Burr Diapir particularly in the vicinity of mines such as the Federal, Broken Range, Clive and Mandarin. Cu anomalies are also concentrated around the margins of the diapir and in the adjacent Merinjina Tillite and basal Tapley Hill Formation in the areas of the Paull's Consolidated, Paull's North, Mount Burr and Nichol's Nob Mines.

Cu anomalies are associated with the margins of areas of diapiric rocks near the Apex and Mount Rose Mines. Rocks of the Tapley Hill Formation, Merinjina Tillite and upper Burra Group between these two mines also have Cu anomalies associated with them.

Smaller areas of anomalous copper occur south of Depot
Spring in the vicinity of Stone's Claim, and in limestone of
the Balcanoona Formation west of Jeremiah Creek and near the Mt.
Ogilvie Goldfield.

The most prominent area of Pb and Zn anomalies is located west of Mt. Ogilvie. Here most of the Pb anomalies and the

highest Zn anomalies are in streams draining the Balcanoona Formation.

An interesting area of Pb anomalies and a few Zn anomalies occurs around Oodnapanicken Hut and Appealinna Well. The anomalies are located mostly in rocks of the Wonoka Formation with a few in the underlying Brachina Formation in a locality where the Wonoka Formation was apparently deposited in an erosional depression within the Brachina Formation. The Bunyeroo Formation, which normally separates the two units, is absent.

In anomalies of survey S5 are scattered across the area between White Well and Voca Vocana Hill in rocks of the Tapley Hill Formation and Balcanoona Formation. Scattered Pb anomalies also occur in the area of survey S5, however as discussed in the previous section these may be spurious.

SUMMARY & CONCLUSIONS

The production of geochemical maps showing contoured rolling means using data from previous stream sediment surveys was found to be impractical. Where surveys overlapped and where resampling was carried out there were considerable differences in the detection of anomalies and the background values obtained. The ratio of background values for different surveys also changes with locality. Coverage of the area for Pb and Zn is incomplete.

As a result, maps showing only the areas covered for Cu, Pb and Zn and all Cu, Pb and Zn anomalies are included in this report.

Although the variations between surveys could be due to differences in methods of sample collection and preparation, size fraction analysed and method of analysis, reasonable correlation was obtained between two surveys (S4 and S7) where most of these factors were different. This study seems to indicate basic flaws in some of the surveys.

It is considered that similar problems are likely to be encountered in other areas of the Flinders Ranges and therefore the production of contoured regional geochemical maps using existing stream sediment data in not feasible.

The apparent unreliability of some past surveys, particularly the non detection of some anomalous areas, emphasizes that areas covered by stream sediment surveys should not be considered to have no potential for base metal mineralisation.

The problems encountered in this study point to the need for certain information about geochemical surveys supplied in reports of work carried out in Exploration Licence areas. It is recommended that, as a minimum the following information should be required:

Type of survey and method of sample collection (perhaps including identity of sampling personnel)

Analytical information including - Size fraction analysed

Name of laboratory

Method of analysis

Acid leach used

Detection limit

Copy of laboratory results

Maps of sample locations with sample numbers and results for each element.

sheet.

It is also recommended that all samples should be analysed for at least Cu, Pb and Zn.

This study also suggests that there is a need for the routine use of standard samples and check samples in geochemical surveys to determine the reliability of the sampling and analytical techniques used. These results together with the results of any orientation studies should be included in reports.

Appraisal of the Serle Area

Most of the Cu anomalies located by the stream sediment surveys are associated with diapirs, particularly the Burr Diapir. Anomalies occur both within the diapirs and around their margins particularly in the Merinjina Tillite and basal/Tapley Hill Formation. Many of the anomalies are in the vicinity of known mines.

Pb and Zn anomalies are located west of Mt. Ogilvie in streams draining limestone of the Balcanoona Formation. Zn anomalies are scattered across the area between White Well and Voca Vocana Hill in rocks of the Tapley Hill Formation and Balcanoona Formation.

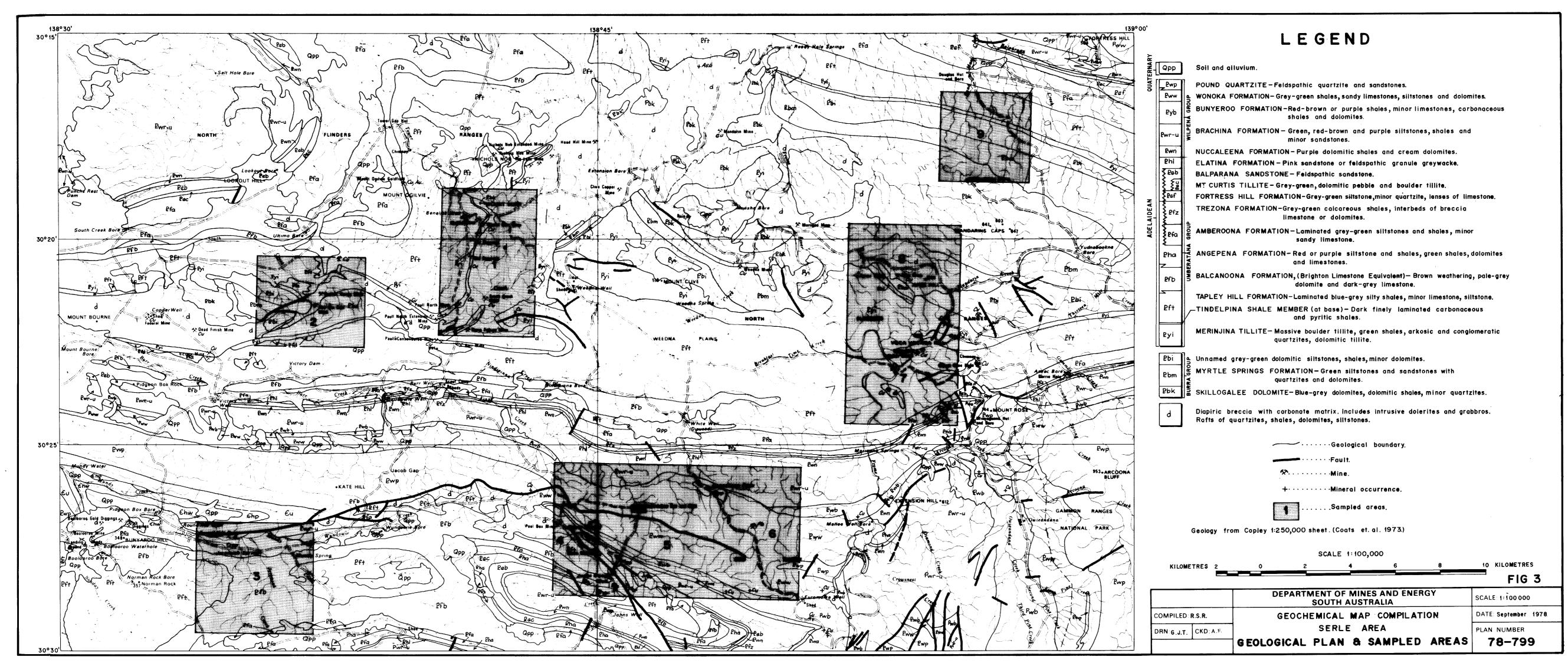
Near Oodnapanicken Hut and Appealinna Well, Pb anomalies and

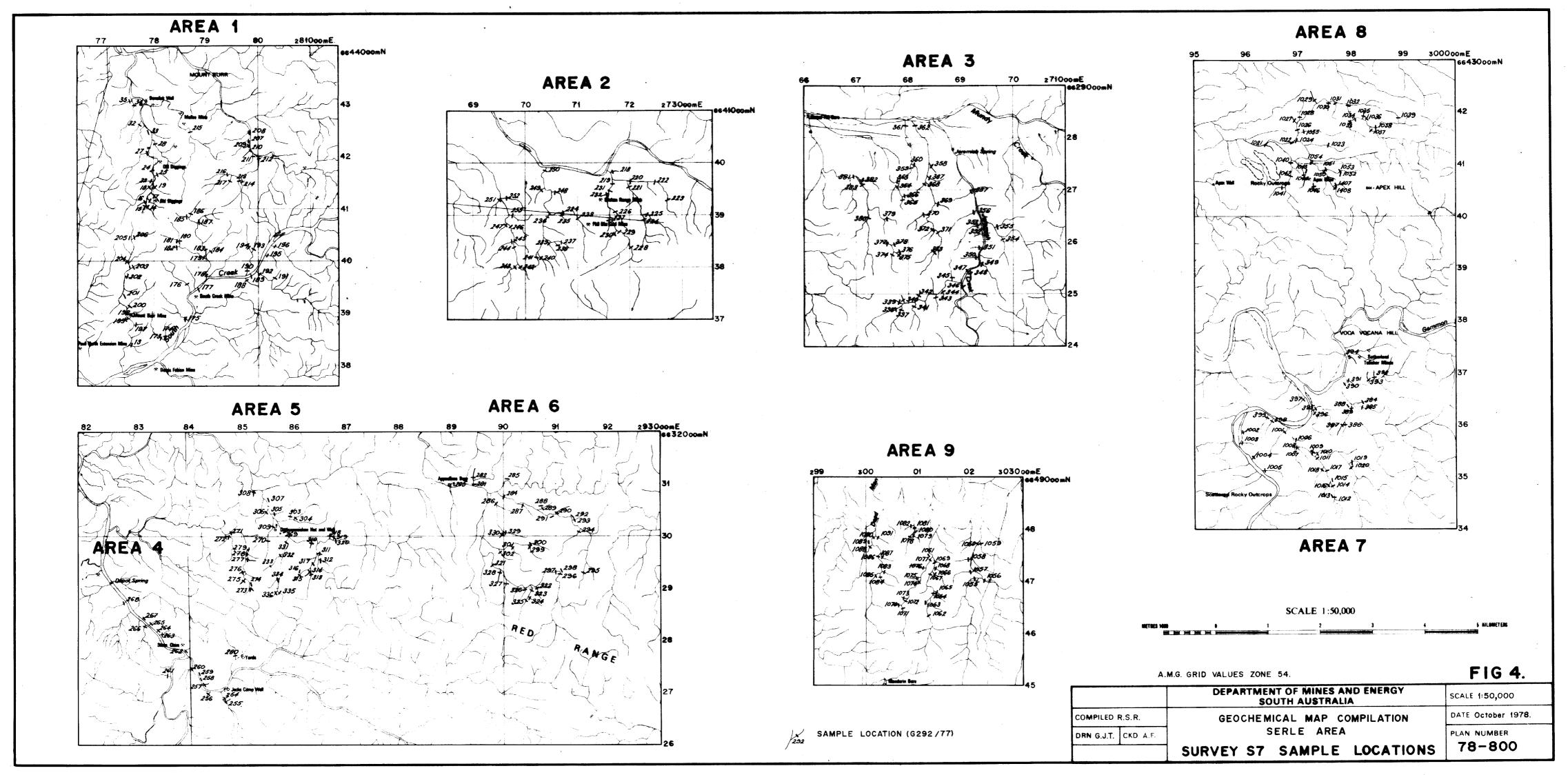
a few Zn anomalies occur in an area where the Wonoka Formation was deposited in an apparent erosional depression in the Brachina Formation.

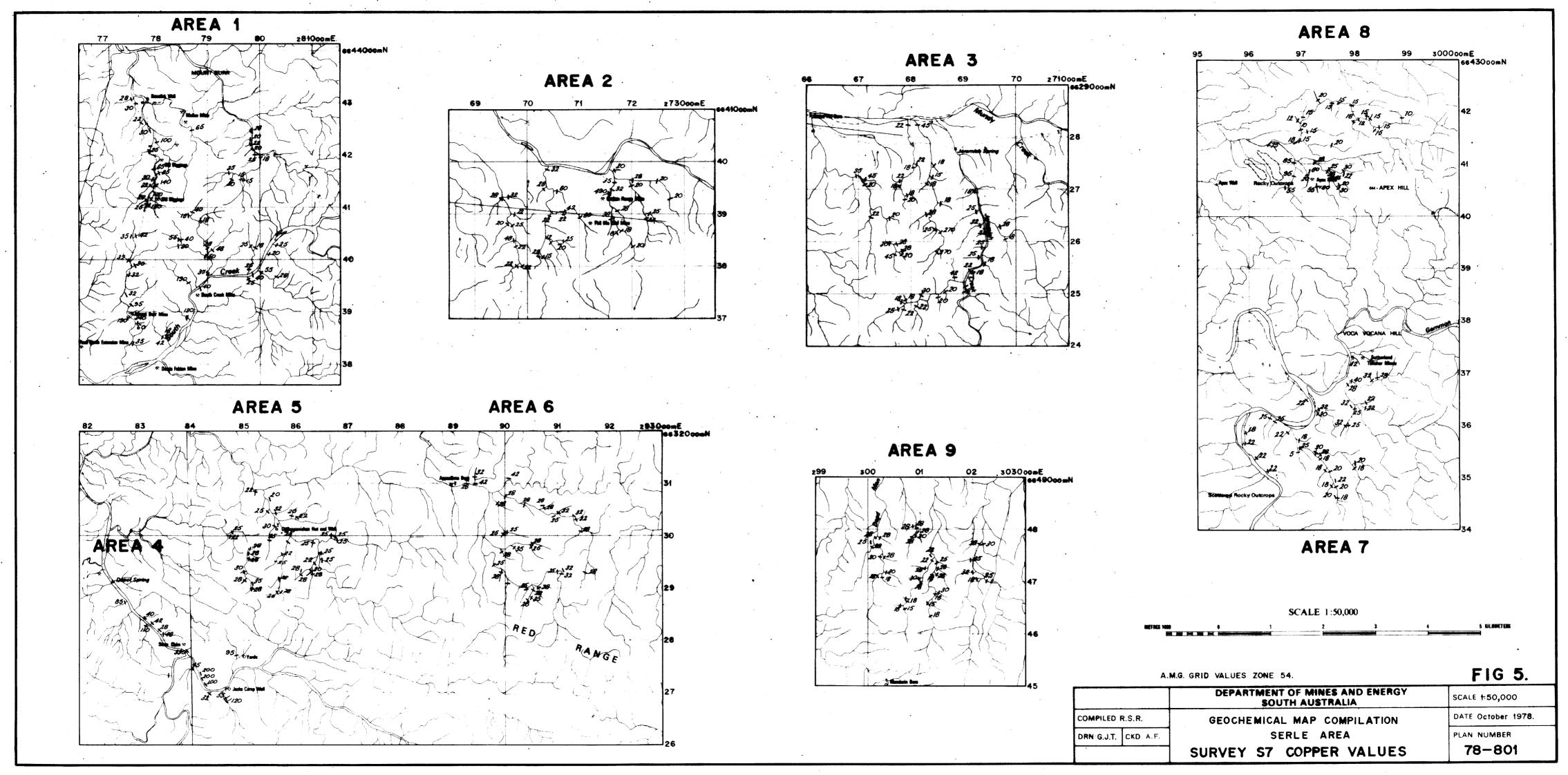
h. A. Robertson R.S. ROBERSTSON

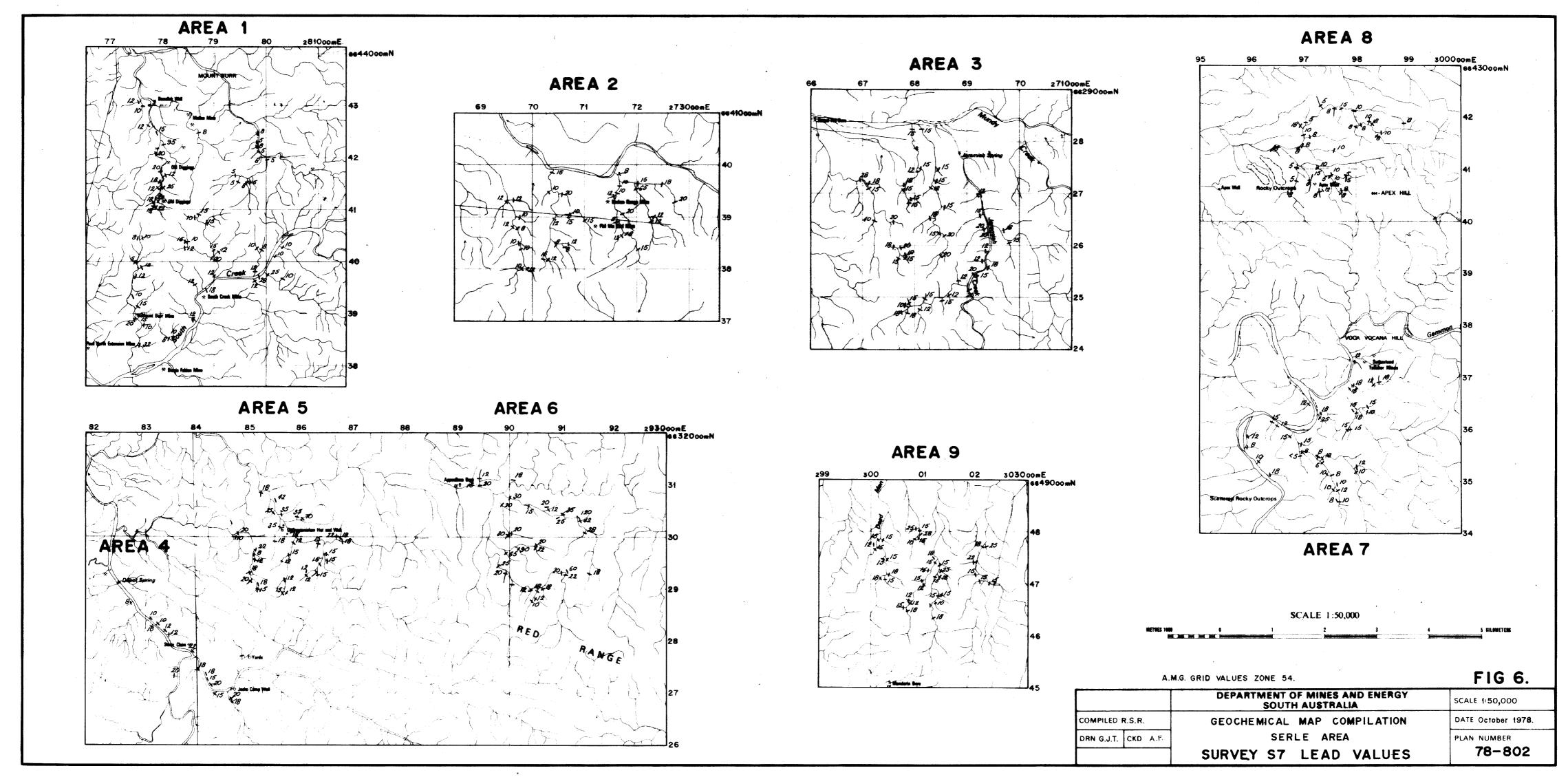
REFERENCES .

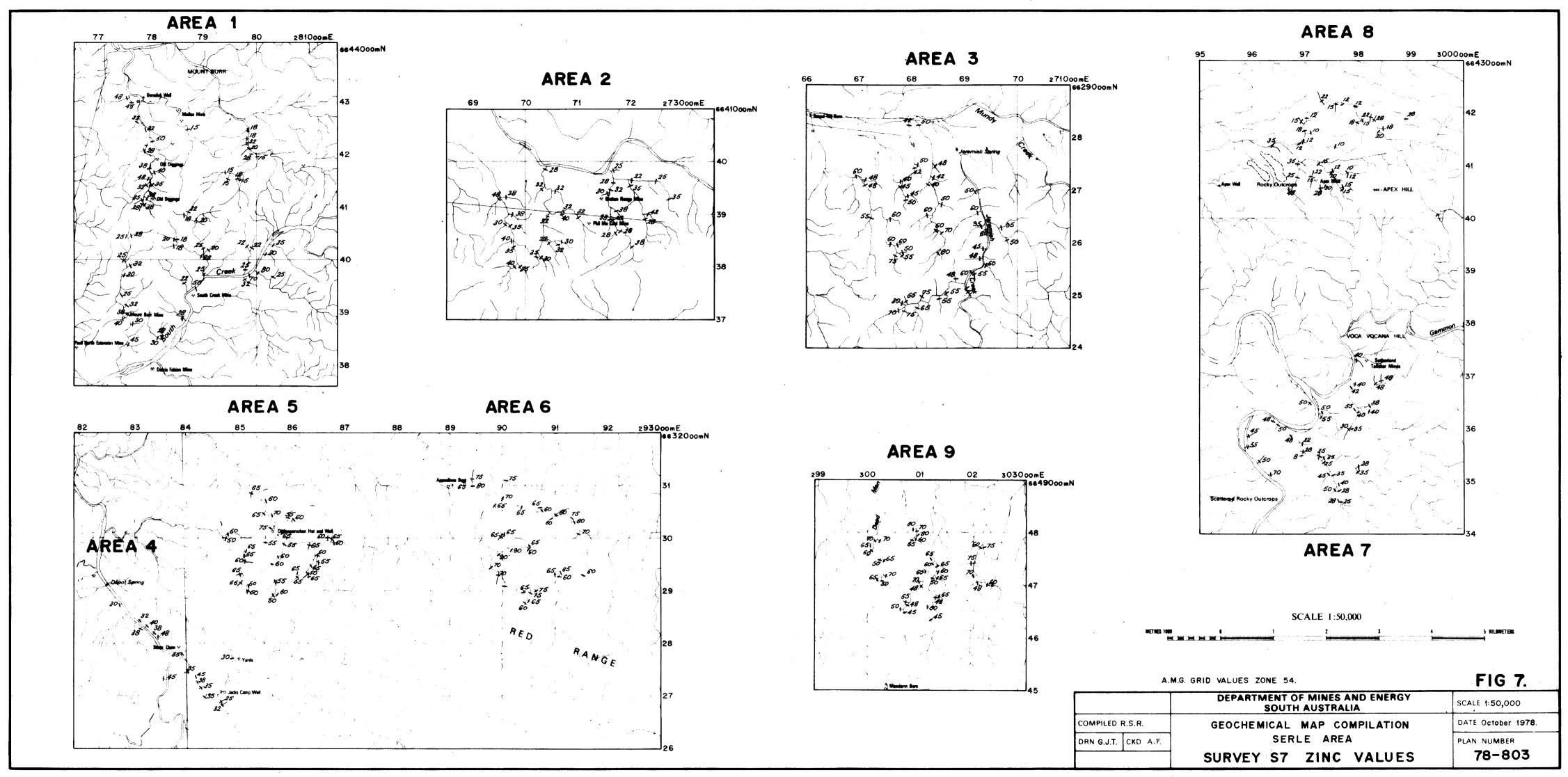
- Andromeda Pty. Ltd. Report on stream sediment survey by P.R. Donovan of McPhar Geophysics Pty. Ltd. Report on stream sediment survey by R.I. Chugg of General Mineral Investigations Pty. Ltd. S.M.L. 429. S. Aust. Dept. Mines and Energy open file Env. 1526 (unpublished).
- Barnes, L.C., 1970. Geological Investigations of the Burr Crush Zone. Rept. 70/43. Mineral Resources Rev., S. Aust., 132: 7-35.
- Boolooroo Mining Co. Pty. Ltd., S.M.L. 366. S. Aust. Dept. Mines and Energy open file Env. 1272 (unpublished).
- Coats, R.P., Callen R.A. and Williams, A.F., 1973. COPLEY map sheet.

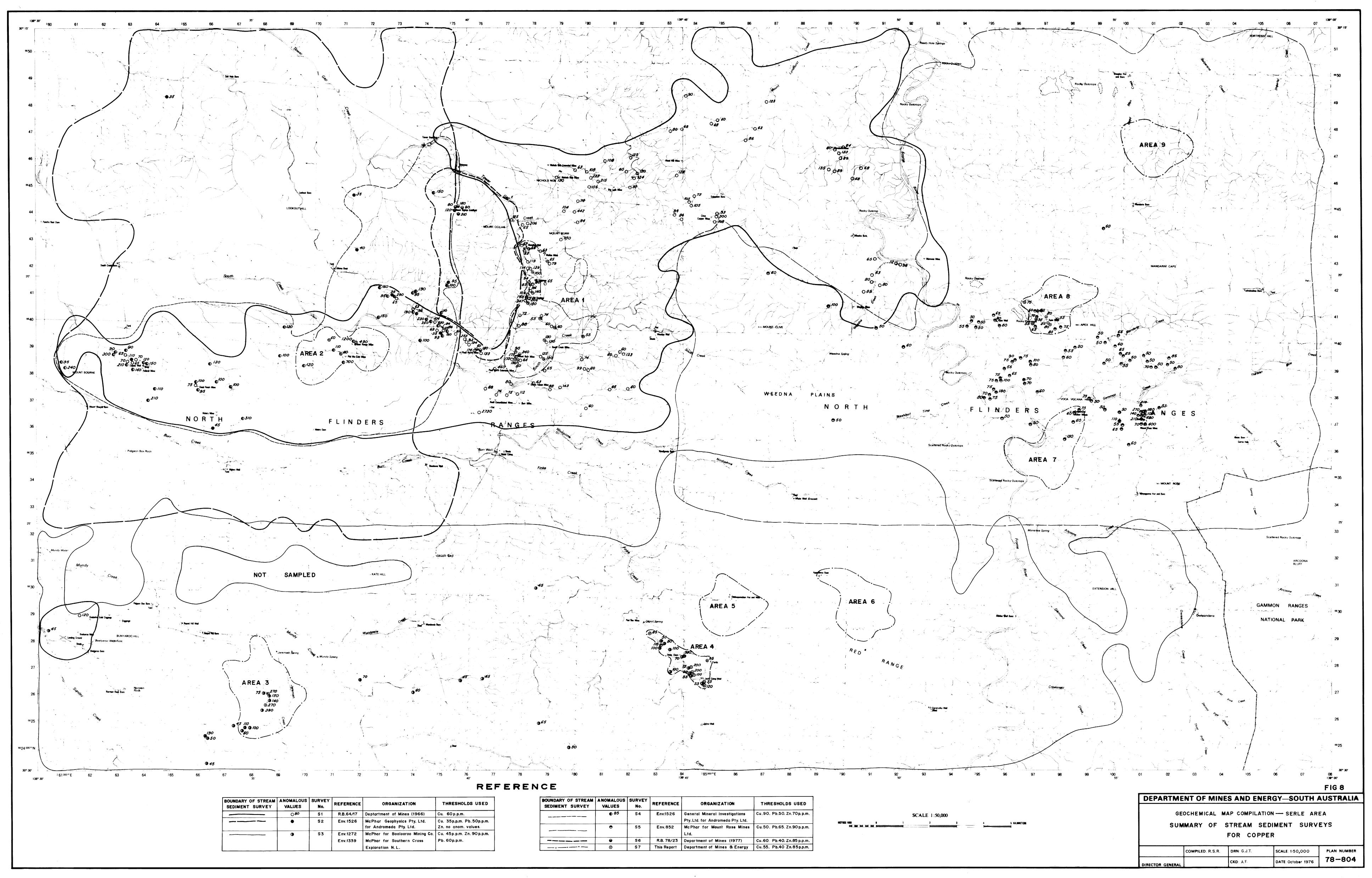

 Geological Atlas of South Australia 1: 250 000 series

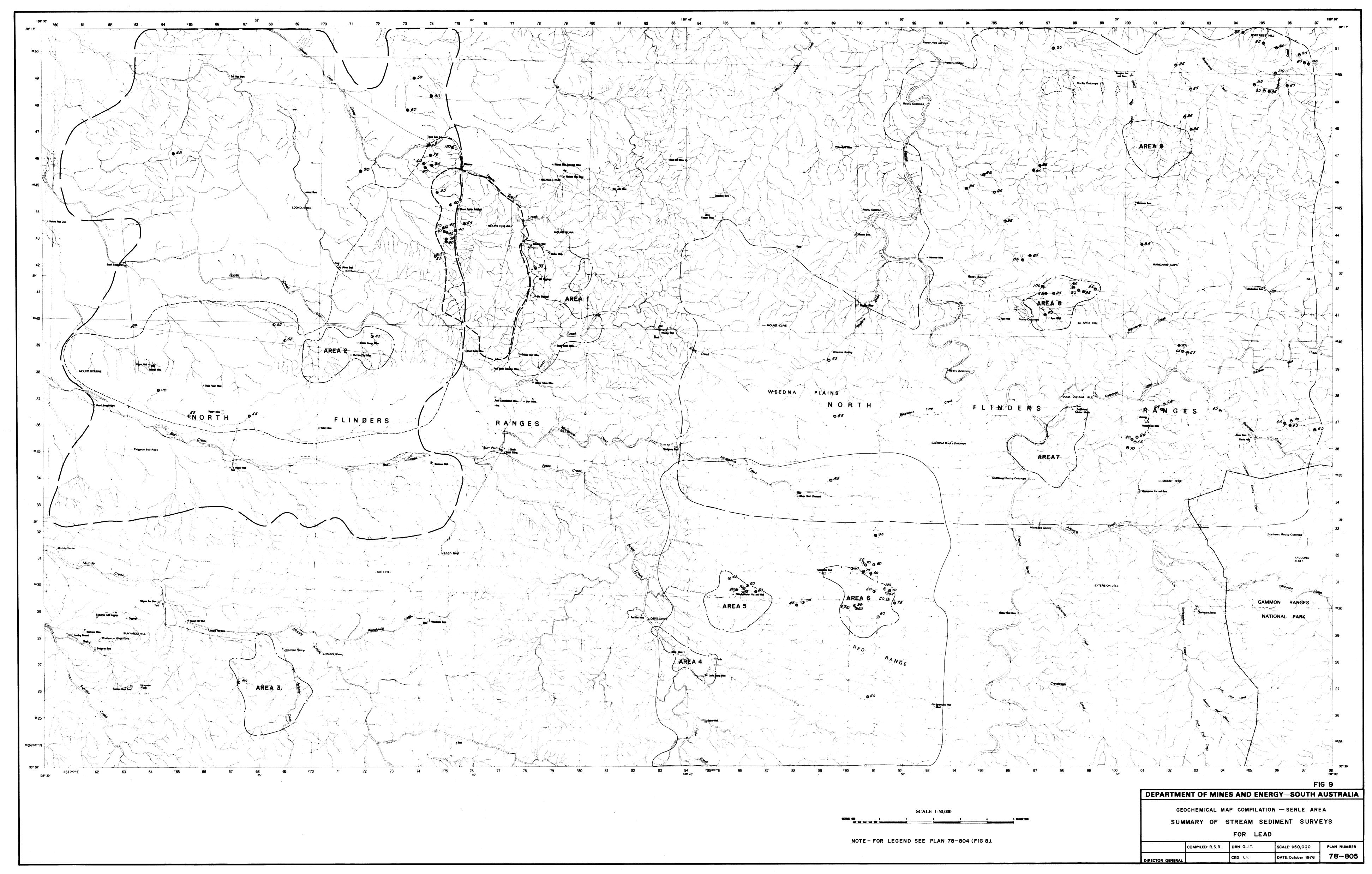

 Geol. Survey S. Aust.
- Coats, R.P., Forbes, B.G., Preiss, W.V. "Adelaidean (Late Precambrian) geology of the Adelaide Geosyncline" (in preparation).
- Donovan, P.R. 1970. Report on stream sediment reconnaissance survey over part of S.M.L. 385, Serle Area, by McPhar Geophysics Pty. Ltd. for Southern Cross Exploration N.L. S. Aust.
 - Dept. Mines and Energy open file Env. 1339 (unpublished).
- Fairburn, W.A., 1967. First Geochemical Report on the Serle-Angepena Area. S. Aust. Dept. Mines report 64/17 (unpublished).
- Mount Rose Mines Pty. Ltd. S.M.L.'s 132 and 133. S. Aust. Dept.

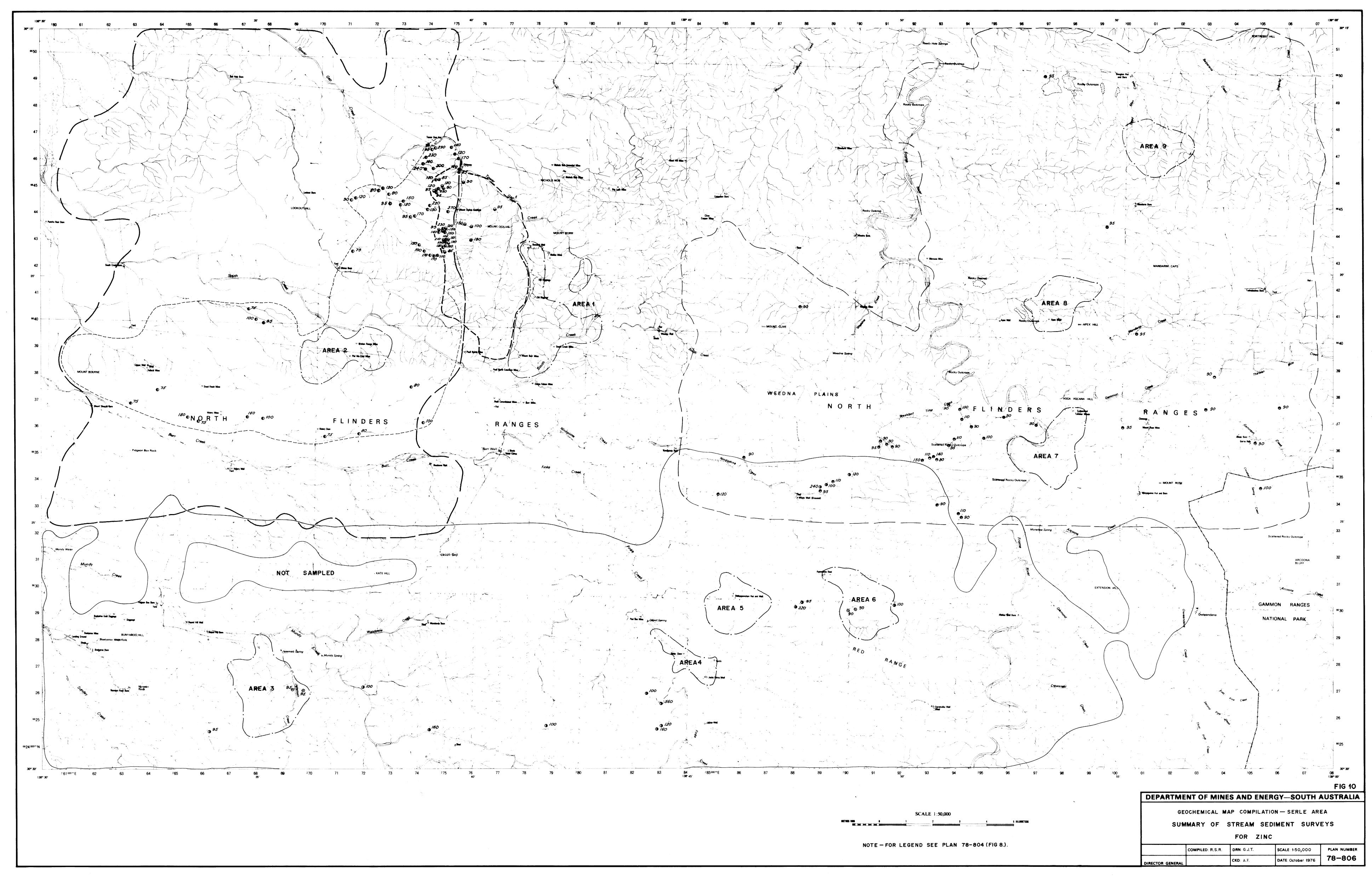

 Mines and Energy open file Env. 852 (unpublished).
- Parkin, L.W., Reyner, M.L., Pitman, R.K. and Johns, R.K., 1953.


 Serle map sheet, Geological Atlas of South Australia,


 1: 63 360 series. Geol. Surv. S. Aust.
- Reyner, M.L. and Pitman, R.K., 1955. The geology of the Serle
 Military Sheet. Rep. Invest. geol. Surv. S. Aust., 5.
- Robertson, R.S., 1977. Geochemical Survey of the Mt. Ogilvie Area,
 Northern Flinders Ranges. S. Aust. Dept. Mines and Energy
 report 78/23 (unpublished).







APPENDIX

Listing of Sample Numbers & Results Survey S7 (New Sampling)

Notes: - All analyses by AMDEL

Method - Atomic Absorbtion Spectroscopy

Analysis scheme C1: Upper detection limit 10 000 ppm Lower detection limit in brackets (p.p.m.).

Co (5), Cu (2), Mn (5), Ni (5), Pb (5), Zn (1)

0.5 gm sample digested in hot perchloric acid.

Analysis scheme C3: Au. Detection limits 50 ppb to 10 ppm 0.5 gm sample digested in hot aqua-regia.

All results ppm

- means not analysed.

-15APPENDIX
Listing of Sample Numbers & Results Survey S7 (New Sampling)

Sample Nos.	Cu	Pb	C _{Zn} 1	Со	Ni	Mn	C Au ³
G 13 /77 G 14 15 16 17 18 19 22 23 24 27 28 32 33 34 35 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210	35 180 25 28 170 32 30 85 52 100 28 42 130 40 530 28 48 40 40 55 28 55 28 55 28 55 28 55 28 56 28 28 28 28 28 28 28 28 28 28 28 28 28	32 22 18 18 22 25 18 12 20 95 215 10 12 8 10 10 15 12 12 13 14 15 15 16 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	45 38 28 33 34 40 38 32 40 32 40 32 40 32 40 40 32 40 40 40 40 40 40 40 40 40 40	18 28 15 20 20 15 15 15 21 21 21 30 18 30 18 31 31 31 31 31 31 31 31 31 31 31 31 31	20 38 30 28 32 32 33 32 33 32 33 32 33 32 33 33 32 33 33	525 545 545 545 545 545 545 545	<0.05 p.p.m.

Sample Nos.	Cu	Pb	Zn	Со	Ni	Mn	Au
G:211/77 212 213 214 215 216 217 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	20 18 15 15 35 20 32 32 32 48 20 20 41 20 41 20 41 20 41 20 41 20 41 40 40 41 40 41 41 41 41 42 42 42 42 42 42 42 42 42 42 42 42 42	15 30 18 20 15 20 12	65 70 75 65 65 60 80 60 75	12 25 30 20 18 15 15 18 12	32 25 25 35 28 28 25 25 28 25 28	690 540 570 580 530 650	<0.05 p.p.m.

Sample Nos.	Cu	РЪ	Zn	Со	Ni	Mn	Au
G 306/77 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 328 329 330 331 332 332 333 334 335 336 337 338 339 330 331 332 333 334 335 336 337 337 338 339 330 331 331 331 331 331 331 331 331 331	25 20 22 30 25 25 28 28 22 25 25 28 28 22 25 25 28 28 22 25 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	25 42 18 35 15 15 15 12 12 12 12 12 12 13 18 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	650 655 665 655 655 655 655 655 655 655	15 10 12 10 10 10 15 15 15 12 10 15 12 10 15 12 10 12 10 15 12 12 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	22 20 65 32 28 28 28 28 22 25 25 25 25 25 25 25 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	530 530 530 530 530 580 690 700 580 630 540 510 480 650 640 550 690 770 630 650 720 660 720 660	<0.05 p.p.m.
345 346 747 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368	42 28 22 18 18 25 22 32 18 28 25 18 18 22 45 22 45 22 18 28	12 25 20 15 18 12 12 20 20 15 18 15 12 15 15 15 15 15 15 15	48 70 65 648 45 695 950 50 42 50 45 42 40	10 18 15 10 12 12 15 15 10 15 10 10 8 10 8 10 8 8 8 10 12 8 8	18 28 25 15 18 15 15 22 18 18 22 18 15 15 15 15 15 15 15 15 15 15 15 15 15	- - - - - - - - - - - - - - - - - - -	

***			-10				•
Sample Nos.	Cu	Pb	Zn	Co	Ni	Mn	Au
سه - 						·	
€ G•369/77	18	15	50	'8	15		
370	28	18	60 .	10	18		
						_	
371	270	20	70	15	22	-	
372	25	15	50	8	15	-	
373	270	20	80	15	25	-	
374	45	15		15	25	_	•
375	30	15	55	12	18		
						_	
376	38	10	50	10	18		
377	30	18	60	10	20	-	,
378	28	20	60	10	20	-	
379	20	20	60	10	20	<u>-</u>	
380	22	40	55	18	25	_	
381	35	28	60	12	22	_	
382	45	18	48	10	15		
						-	
383	20	, 15	48	10	20	-	
384	22	15	38	15 .	25	-	
385	22	10	40	15	25	-	
38 6	25	15	35	12	22	-	•
387	32	15	30	18	35	-	
388	32	15	55	15	28	_	
389	25	18	40	15		_	``'
					22	-	
390	28	18	42	12	25	-	
391	40	18	40	18	38	-	^ 0
392	28	18	48	12	28	-	0.
393	32	12	48	18	30	_	0.5
394	42	12	40	15	18	_	
395	22	18	50	10	18	_	p.p.m.
396	30	25	53	15	28		d.
						_	•
397	22	12	50	10	20	-	:
398	25	12	50	12	20	-	
399	25	15	48	12	25	-	
1001	22	15	48	12	20	_	
1002	18	12	45	8	18	-	
1003	22	8	55	10	25	-	
1004	22	10	50	15	20	_	
1005	22	18	70	10	18		
	10	10		. 10		_	
1006	18	15	² 22	15	28	-	
1007	5	< 5	8	8	18	-	
1008	25	8	28	10	20	-	
1009	20	8	35	10	20	-	
1010	28	18	35	25	30	-	
1011	18	5	25	15	25	-	
1012	18	10	25	15	22	-	
1013	20	8	28	12	20	_	•
1014	20		28	15	2.5	_	
1015	22	10	40	10	20		
	10					-	
: 1016	18	10	50	12	25	-	,
• 1017	20	8	35	12	22	-	
1018	18	10	45	12	22	-	
1019	20	12	38	10	18	-	
1020	18	10	35	10	20	-	
1021	. 75	18	35	18	20	-	
1022	28	8	12	12	18	· <u>-</u> ·	
1023	20	10	10	28	32		
	.16			40 1 F		.	
1024	15 .	8	12	15	22	-	
1025	10	8	10	15	20	_	•
1026	15	10	18	12	20	-	
1027	12	18	15	12	20	-	
1028	15	5	12	18	22	-	
1029	20	5	22	12	25	_	
1030	15	8	15				
1030	13	0	ТЭ	18	25	-	

_	1	٥	_
_	1	9	-

Au

3			_	19-		
Sample Nos.	Cu	Pb	Zn	Со	Ni	Mn
<u>*</u>	····		· · · · · · · · · · · · · · · · · · ·			
G 1031/77	15	15	12	12	25	_
1032	15	10	12	. 15	18	_
1033	18	8	18	12	25	
1034	12	8	15	12	22	_
1035	15	10	22	10	20	_
1036	15	8	28	8	18	_
1037	15	8	20	20	25	_
1038	15	10	18	20	25	_
1039	10	8	28	5	12	
1040	85	5	35	15	25	-
1041	55	8	48	15	25	-
1042	95	5	25	22	22	-
1043	80	15	22	22	25	-
1044	20	8 8	15	18	2,5	-
1045	55	8	28	15	18	•
1046	80	12	30	18	25	-
1047	20	8	15	22	20	-
1048	30	8	15	18	28	-
1049	55	10	18	22	28	-
1050	38	5	10	25	28	-
1091	25	10	12	18	28	-
1052 1053	22	5 5	12	15	30	-
1053	30 28	3 10	10 15	15	28	-
1055	18	.15	48	15 10	25 18	
1055	25	15	60	15	22	_
1057	32	15	70	18	28	-
1058	35	22	75	18	25	_
1059	30	25	75	15	25	_
1060	28	18	60	15	22	_
1061	28	18	65	15	22	_
1062	18	18	45	15	18	_
1063	15	10	50	10	15	-
1064	18	15	42	10	15	-
1065	30	15	65	18	25	-
1066	28	18	65	18	25	-
1067	18	15	50	10	18	-
1068	25	25	60	15	22	-
1069	28	15	65	18	22	-
1070 1071	18 15	15 18	50 45	12	15	<u>-</u>
1071 1072	18	12	48	12 15	15 18	-
1072	20	12	55	15	18	_
1075	30	15	70	22	25	<u> </u>
1076	28	15	65	18	25	_
1077	22	15	60	15	20	
1078	2.8	10	65	18	25	-
1079	30	15	60	18	25	-
2080	28	28	80	15	28	_
1081	28	15	70	18	28	-
1082	28	25	80	12	28	-
1083	30	18	70	15	25	-
1084	18	15	50	8	18	7
1085	28	18	65	15	22	-
1086	20	15°	50	10	18	-
1087	28	15	65	20	25	-
1088	28	15	65 65	15	22	-
1087	25	12	65 70	15	25	-
1090 1091	28	15 15	70 70	18	25	-
TOST	28	15	70	18	25	-