# DEPARTMENT OF MINES

SOUTH AUSTRALIA

GEOLOGICAL SURVEY
METALLIC RESOURCES DIVISION

A GEOCHEMICAL APPRAISAL OF THE
BUNYEROO FORMATION
COPLEY 1:250 000 SHEET

by

B.A. EBERHARD GEOLOGIST

Geochemical Exploration Section

Rept.Bk.No. 77/58 G.S. No. 5884 D.M. No. 378/59

| CONTENTS                             | PAGE |
|--------------------------------------|------|
|                                      |      |
| ABSTRACT                             | 1    |
| INTRODUCTION                         | 1    |
| GEOLOGY                              | 1    |
| MINERALIZATION                       | 4    |
| GEOMORPHOLOGY                        | 5    |
| GEOCHEMISTRY                         | 6    |
| Sampling and Analysis                | 6    |
| Detailed Survey - Wearing Gorge Area | 7    |
| Regional Survey                      | 10   |
| Cu, Pb and Zn                        | 10   |
| (a) Background Values                | 10   |
| (b) Anomalies                        | 11   |
| Co, Ni, V, Mn and Mo                 | 13   |
| SUMMARY AND RECOMMENDATIONS .        | 15   |
| REFERENCES                           | 18   |
| APPENDIX                             | 19   |
|                                      |      |

### FIGURES

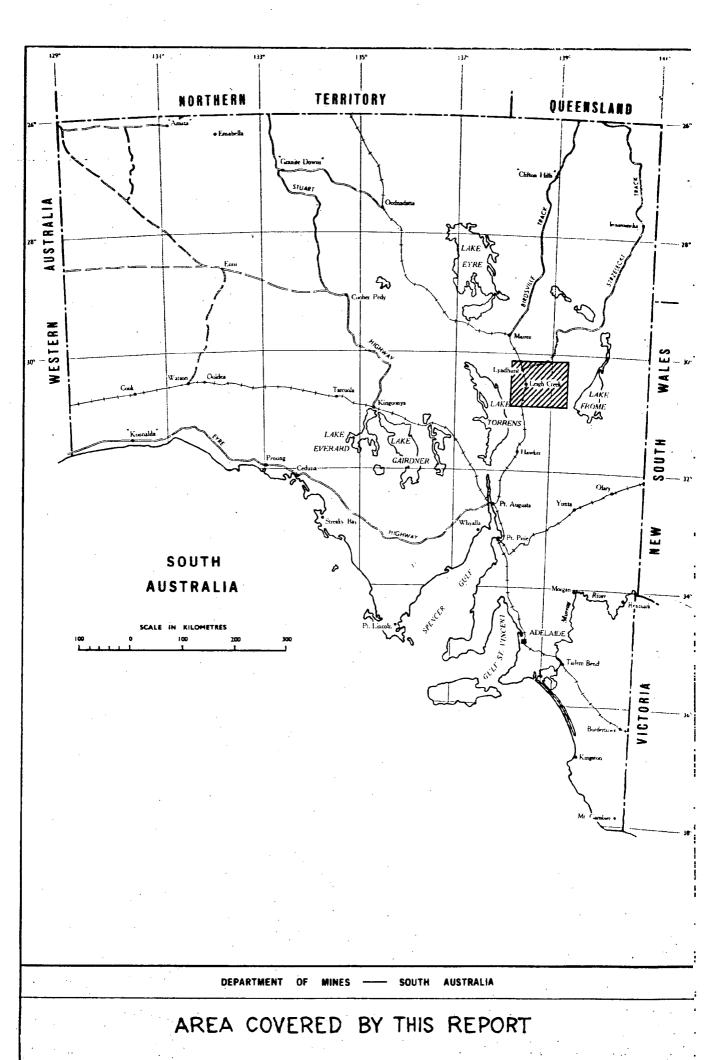
| Figure No. | <u>Title</u> °                                                                          | Plan No. |
|------------|-----------------------------------------------------------------------------------------|----------|
| 1          | Locality Map                                                                            | S12686   |
| 2          | Geochemical and Geological Profiles for Soil Traverses 1B,2B,3B and 4B                  | S12691 · |
| 3          | Geochemical and Geological Profiles for Soil Traverses 5B,6B,7B and 8B.                 | S12692   |
| 4          | Geochemical and Geological Profiles<br>for Soil Traverses 9B,10B,11B and 12B            | S12693   |
| 5          | Geochemical and Geological Profiles<br>for Soil Traverses 13B,14B,15B and 16B           | S12694   |
| 6          | Location of Soil Traverses, and Means of Co, Ni, V, Mn, Cu, Pb, Zn, Bunyeroo Formation. | S12687   |

# DEPARTMENT OF MINES SOUTH AUSTRALIA

Rept.Bk.No. 77/58 G.S. No. 5884 D.M. No. 378/59

A GEOCHEMICAL APPRAISAL OF THE BUNYEROO FORMATION COPLEY 1:250 000 SHEET

#### ABSTRACT


The late Upper Proterozoic Bunyeroo Formation was soil sampled along 16 traverses a bout 45 km apart. About 1 200 samples were analysed for Cu, Pb, Zn, Co, Ni, V, Mn and Mo. Geochemical profiles show a close association between Cu and Pb anomalies and green shale and dolomite beds in three stratigraphic positions. A closer traverse spacing of 15 km is considered more suitable to delineate areas of interest. Further work, with sampling controlled by geology, is recommended.

#### INTRODUCTION

A soil sampling programme was initiated in September 1976 on the COPLEY 1:250 000 sheet, to study the geochemistry of the Bunyeroo Formation on a regional scale, to locate areas for further exploration work. The Bunyeroo Formation, containing widespread Cu-Pb and Pb-Zn mineralization, represents a favourable sedimentary environment for syngenetic sulphide deposition. About 1 200 samples were taken on 16 traverses across the formation (Fig. 1) and analysed for Cu, Pb, Zn, Co, Ni, V, Mn and Mo. One traverse was analysed for Au, Ag, and Cd, but as all results were at or below the detection limit, analysis for these elements was discontinued. Geochemical and geological profiled, background means and factor analysis were the main methods used to delineate regional trends in the geochemistry of the formation.

#### **GEOLOGY**

The Bunyeroo Formation, belonging to the late Precambrian Wilpena Group, was deposited in a period of cyclic sed-



P.F. No. \$5850 994.2

imentation subsequent to the Marioan Glaciation. It is conformably underlain by the ABC Quartzite in the southern areas of the COPLEY 1:250 000 sheet, and by siltstones of the Brachina Formation and Ulupa Siltstone further north. The Wonoka Formation, consisting predominantly of dolomites and dolomitic siltstones, which become more sandy towards the top, conformably overlies the Bunyeroo Formation.

The formation is characteritstic of a shelf environment, and consists predominantly of dark red and purple shales, but with occasional carbonate and green shale interbeds and minor carbonaceous shale and phosphatic chert. Lateral changes in the lithology and thickness of the strata are common, and these generally reflect depositional variations in the oxygen content of the water, rate of deposition and fluctuations in sea level.

Geology profiles 1B to 8B (Fig. 2 & 3) in the Wearing

Gorge area show that the formation there consists essentially of a

lower sequence of shales and an upper sequence of regular interbeds

of dolomite in purple shale and including the Wearing Dolomite

Member. The boundary with the Wonoka Formation is usually placed

where green shales and carbonates become much more common.

Eight traverse lines, 9B to 16B (Figs. 4&5), on the rest of COPLEY show that the upper sequence of regularly interbedded dolomites and shales is thinner along lines 9B, 14B and 16B and is absent from lines 12B and 15B to the north west. On lines 9B, 14B and 16B a large proportion of the shales in the lower sequence are grey, and weather to a brown or greenish colour: lines 12B and 15B consist of thinly bedded purple shales with very rare thin green shale interbeds.

Although green shale interbeds may occur anywhere within the formation they are generally thicker and more abundant in the southern areas of COPLEY and in three stratigraphic positions.

These are:

- (1) a sequence of grey, green and yellow shales, sometimes containing dolomite interbeds, in the lower part of the formation;
- (2) purple and green shales with more thickly bedded dolomites, just beneath a distinctive sequence of regularly interbedded shales and dolomites including the Wearing Dolomite Member;
- (3) near the top of the formation, where green shales, characterizing the depositional environment of the Wonoka Formation, become more common.
- S.A. Barytes Ltd. (1971) distinguished four stratigraphic units in the Bunyeroo Formation in the Alicota Bore area. Commencing from the base of the formation, these are:
  - (1) purple shale a finely bedded purple greyish shale. Copper mineralization is confined to sporadic interbeds of green shale;
  - (2) banded dolomitic siltstone olive-grey siltstones, containing bands and interbeds of silty dolomite and green shale. Mineralization occurs mainly in this unit, as malachite and limonite stains in green shales and specks of chalcopyrite along bedding planes in the silty dolomites;
  - (3) interbedded dolomite, siltstone and shale. Specks of chalcopyrite were found in dolomites carrying limonite after pyrite;
  - (4) a green shale with slaty cleavage, barren of mineralization.

The sequence containing the Wearing Dolomite Member is in the same stratigraphic position as the banded dolomitic siltstone (2) above.

#### MINERALIZATION

Figure 1 shows the distribution of mines and known occurrences of mineralization in the Bunyeroo Formation. The most important stratigraphic position for copper mineralization is the second unit defined above.

Persistent traces of copper mineralization are found in thinly bedded green shales and dolomites interbedded with the purple shales or in adjacent shales and structural traps. The Wearing Dolomite Member contains weak stratiform copper mineralization as blebs of chalcopyrite within the dolomite and in networks of calcite veins.

The greatest concentration of mineralization occurs in the vicinity of Beltana and is considered to be all secondary. At the Harvey Return, Black Feather and Enterprise Mines, copper mineralization is associated with vertical faults and at the Walter and Six Mile Claim mines, the copper occurs in a green shale bed. Exoil N.L. (1971) drilling near here, in the vicinity of Puttapa, intersected mineralized carbonaceous green shale beds containing fine grained, disseminated, syngenetic pyrite, galena and sphalerite.

The Mocatoona and Lady Millicent Copper Mines occur in a local lens of bleached black shale containing pyrite of presumed sedimentary origin. Secondary redistribution and enrichment of copper has occurred and all workings are of secondary ore. Rock chip samples taken by Mt. Isa Mines Ltd. in this area show a clear variation in Cu contant with respect to geochemical environment of deposition (Table 1).

TABLE 1

| Rock Type           | Depositional Environment | No. of Samples | Cu Me (ppm) |
|---------------------|--------------------------|----------------|-------------|
| Upper Red Shale     | Oxidising Environment    | 22             | 34          |
| Upper Green Shale   | Intermediate Environment | 13             | 108         |
| Pyritic Black Shale | Reducing Euxinic Facies  | 100            | 266         |
| Lower Green Shale   | Intermediate Environment | 18             | 146         |
| Lower Red Shale     | Oxidizing Environment    | 17             | 69          |

The company believes that the mineralization was introduced by a volcanic exhalative mechanism through a nearby penecontemporaneous fault.

At the White Virgin mine near Constitution Hill erratically mineralized quartz and calcite veins occur, which contain galena; also, near the top of the formation, lead mineralization is present in a well-bedded carbonaceous rock.

Thomson (1965) rock-chip sampled a 36-metre section at the base of the Wonoka formation in the Wearing Gorge area and noted a strong correlation between high Cu values and green shale and dolomite interbeds.

#### **GEOMORPHOLOGY**

The Bunyeroo Formation generally underlies flat, gently undulating country, with occasional low rounded hills, allowing relatively easy access for sampling. It is bounded by ridges and rugged hilly country of the ABC/Quartzite or Brachina Formation on one side and rolling hills of the Wonoka Formation on the other.

Soil developed over shales in the Bunyeroo Formation is generally thin, consisting of silts and small chips of shale. Thin quartzite gravels, probably derived from the Pound or ABC/Quartzites, are common.

Vegetation is sparse, with the main growth being small trees, bushes and native grasses. Larger eucalypts grow along stream beds.

#### GEOCHEMISTRY

## Sampling and Analysis

About 1 200 soil samples were taken on 16 traverses across the formation (Fig.1) and the sample interval was 10 or 20 metres depending on the dip of the bedding. Areas of transported soils and gravels were avoided by displacing traverse lines.

Bedding dips and an estimate of slope of the land were used to recalculate sample intervals to true stratigraphic thickness. On each line, composite samples were analysed to represent the geochemistry of the stratigraphic intervals. The analysed samples for lines 1B, 2B to 8B and 9B to 16B consisted of 2, 10, and 4 smaller samples respectively, The lower part of the formation on traverse 9B was not sampled.

The samples were sent to AMDEL, where they were dried and sieved to obtain enough -180 micron size fraction for analysis. This size fraction is retained at the Mines Department. Each sample was analysed by atomic absorption spectrometry (A.A.S.) for Cu (detection limit 2 ppm), Pb (5) and Zn (1), and by quantitative emission spectroscopy (E.S.) for Co (5), Ni (5), V (10), Mn (10) and Mo (3); soil traverse 1B was also analysed for Au (0.05) using A.A.S. and Ag (0.1), Cd (3), Cu (1), Pb (1) and Zn (20) using E.S. Analysis for Au, Ag and Cd was discontinued because values were at or below detection limit. All analytical data are recorded in a Department of Mines computer file.

The unsieved samples were tested for anomalous levels of radioactivity with a scintillometer at the Mines Department Depot, but were all at background.

## Orientation Survey - Wearing Gorge Area

Orientation work was carried out in the Wearing Gorge area (Fig.1) along 8 lines across the strike over a strike length of 30 km. (Traverses 1B to 8B).

Positions of traverse lines are shown on Figure 1 and geochemical and geological profiles on Figures 2 to 5. The main purpose of the work was:

- (a) to find the variability of geochemical resultsupon resampling a traverse;
- (b) to consider the variability of geochemistry along strike and establish the best traverse interval for the regional survey.

Regional threshold to anomalous values were obtained from cumulative frequency plots on log probability paper to define log normal populations, according to the method of Tennant and White (1959). This gave threshold values of 40 ppm for Cu, 30 ppm for Pb and 95 ppm for Zn. It also gave an anomalously low population of Zn values with a threshold of 45 ppm. Means for Cu, Pb and Zn were computed on each line for all values, for all background values below the defined threshold) and for background values in purple shale.

Lines 1B and 2 are almost coincident and were sampled four weeks apart. Each sample analysed was a composite of two smaller samples on line 1B and ten smaller samples on line 2B. A comparison between the two geochemical profiles shows that the Cu,

Pb and Zn profiles are very similar. Significant differences between the two profiles are:

- (1) a large single point Cu-Pb anomaly on line 1B, presumably associated with a thin dolomite interbed, occurs as a moderate Cu anomaly on line 2B, possibly due to the difference in the sampling method;
- (2) Pb background values are consistently higher on line lB, resulting in a difference of 4 ppm in the Pb background means of the two lines.

Lines 3B, 7B and 8B (Figure 1), show that a change in the geochemistry from line to line may be related to rock type, with values occurring over green shales. An exception to this is the generally depleted Cu, Pb and Zn background values on line 8B and parts of line 7B.

It is concluded from these results that a line spacing of about 15 km is suitable for a regional geochemical appraisal of the formation. Sampling of the remainder of the formation on COPLEY at this spacing would require about 25 soil traverses.

Means for Cu background values are too variable to delineate regional trends due to significant local variations in rock type. However, Cu background values in purple shales give more consistent means and may delineate regional changes in background values. Pb and Zn background values do not vary as much with rock type and may be used for comparison along strike.

TABLE 2
STATISTICAL RESULTS IN THE WEARING GORGE AREA

- 1. Traverse mean
- Mean of background values (i.e. values below the defined threshold; see page 5)
- 3. Mean of background values in purple shales

| ine             | Type of<br>Mean | No. of<br>Samples | <u>Cu</u><br>Mean | Standard<br>Deviation | No. of<br>Samples | <u>Pb</u><br>Mean | Standard<br>Deviation | No. of<br>Samples | <u>Zn</u><br>Mean | Stand:<br>Deviat |
|-----------------|-----------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|------------------|
|                 | 1               | 84                | 27                | 39                    | 84                | 20                | 14                    | 84                | 72                | 9                |
|                 | 1<br>2<br>3     | 72                | 16                | 8                     | 82                | 17                | 5<br>3                | 83                | <b>72</b>         | · 9              |
| 2B              | <b>.</b> .      | 12                | 18                | 4                     | 12                | 15                | 3                     | 12                | 64                | - 7              |
| 2B              | 1               | 88                | 24                | 20                    | 88                | <b>15</b> .       | , 9                   | 88                | 71                | , 12             |
|                 | 1<br>2<br>3     | 75                | 16                | <sub>.</sub> 9        | 84                | 13                | 5                     | 87                | 71 .              | 12               |
| ì               | 3               |                   |                   | Insuff <sup>*</sup>   | icient Samp       | oles              |                       |                   |                   |                  |
|                 | 1               | 93                | 26                | 15                    | 93                | 13                | . 8                   | 93                | 70                | 10               |
| 3B              | 2               | 83                | 22                | 8                     | 91                | 12                | 6                     | 92                | 70                | ·10              |
| V               | - 3             |                   |                   | Insuff                | icient Sam        | oles              |                       |                   |                   |                  |
| <b>#</b> 8      | 1               | 112               | . 23              | 14                    | 112               | 20                | 48                    | 112               | 71                | 8                |
| P               | 1<br>2<br>3     | 107               | 21                | 10                    | 66                | 13 ·              | 5                     | 112               | 71                | 8                |
| -               | . 3             | 12                | 19                | 7 Inst                | ufficient S       | Samples           |                       |                   |                   |                  |
| B               | 1               | 100               | 30                | 53                    | 100               | 14                | 15                    | 100               | 66                | 9                |
| U               | 1<br>2<br>3     | 87                | 22                | 11                    | 98                | 13                | 15                    | <b>9</b> 8        | 64                | 9<br>· 6<br>5    |
| _               | 3               | 23                | 17                | 4                     | 25                | 12                | 3                     | 25                | 66                | 5                |
|                 | •               | 70                |                   | 00                    | 70                | 1.4               | 4                     | 78                | 66                | 6                |
| EB .            | 1<br>2<br>3     | 78<br>74          | 20<br>17          | 23                    | 78<br>78          | 14<br>14          | 4<br>4                | 78<br>78          | 66                | 6<br>6<br>5      |
| _               | 2               | 74<br>24          | 19                | 9<br>5                | 28                | 16                | 2                     | 25                | 63                | 5                |
| 7B              | <b>.</b>        | <b>24</b>         | 13                | <b>J</b>              | . 20              | 10                | -                     |                   |                   | •                |
| <del>1</del> /B | 1               | 72                | 22                | 16                    | 72                | 13                | 5<br>5                | 72                | 55                | 14               |
|                 | 1 2             | 67                | 18                | 7                     | 71                | . 13              | 5                     | 72                | 55                | 14               |
|                 | 3               |                   |                   | Insuff                | cient Samp        | oles              |                       |                   |                   |                  |
| 8B              | 1               | 78                | 18                | 17                    | 78                | 9.                | .3<br><b>3</b>        | 78                | 39                | 13               |
| A               | 2               | 78<br>72          | 18<br>12          | 9                     | 78                | 9                 | 3                     | 78                | 39                | 13               |
|                 | 3               |                   |                   | Insuff                | icient Samp       | oles              |                       |                   |                   |                  |

## Regional Survey

In addition to the detailed survey, 8 traverse lines (9B to 16B) were evently spaced over the remainder of COPLEY (Fig.1) as a preliminary survey at a line spacing of about 45 km. Although this interval was too wide to ensure an accurate picture of regional changes in geochemistry, the data were appraised to see if the results indicated the possibility of completing the project more efficiently.

#### Cu, Pb and Zn

#### (a) Background Values

Means and standard deviations for background values in major shale units are shown on Table 3; no mean was calculated for dolomite, as there is no sample interval entirely over this rock type. Background values are generally lower where dolomites are present as thin interbeds in purple shales. Colour changes from purple to green in the shales significantly affect Cu background values. Cu values are very variable in the green shales, but purple shale background values only vary from line to line.

TABLE 3
Statistical Data for Shale Units in the Bunyeroo Formation

| Number of Samples    |     |      |    |       |          |      |     |  |
|----------------------|-----|------|----|-------|----------|------|-----|--|
|                      |     | Cu   |    |       | <u>b</u> | Zn   |     |  |
| · .                  |     | Mean | SD | Me an | SD       | Mean | SD. |  |
| Purple Shale         | 330 | 21   | 7  | 17    | 6        | 67   | 14  |  |
| Green shale          | 56  | 32   | 14 | 19    | 7        | 66   | 12  |  |
| World Average Shales |     | 23   |    | 12 -  |          | 62   |     |  |

Means and standard deviations for each line are shown on Table 4 and Figure 6. Traverse lines are too widely spaced (about 45 km of strike) to give a true indication of regional trends. However, means for background Cu values and background values in purple shales on the lines that have been sampled suggest a division between northern lines (9B, 13B, 14B, 15B and 16B) with higher background and southern lines with lower background (Fig. 6). In background values are noticeably lower on the southwestern traverses (lines 11B, 12B and 13B); Pb background values are less variable on a regional scale, but are generally lower in the Wearing Gorge area.

#### (b) Anomalies

Generally, Cu anomalies appear to be associated with green or green-weathering grey shales. Many of these are single point anomalies over very thin green shale interbeds, which are scattered throughout the formation and are not very persistent along strike.

The main Cu, Pb and Zn anomalies are associated with thicker green or green-weathering grey shales, and generally occur at the three stratigraphic positions, detailed on page 2, especially in the southern areas of COPLEY. Large Cu anomalies also occur lower in the formation on traverse 14B, where the upper interbedded siltstone and dolomite sequence is very thin.

Almost all Zn values in the anomalously low population defined earlier, occur in the northern portion of the Wearing Gorge area, where Cu and Pb values are also generally low. This may be due to secondary redistribution of metal ions.

The largest anomalies recognized on the soil sampling programme are:

## TABLE 4

- 1. Traverse Mean
- 2. Mean of background values (below defined threshold)
- 3. Mean of Background values in Purple Shale

| Line         | Type of | No. of | <u>Cu</u> | Standard  | No. of | <u>Pb</u> | Standard  | No. of | <u>Zn</u> | Standard  |
|--------------|---------|--------|-----------|-----------|--------|-----------|-----------|--------|-----------|-----------|
|              | Mean    | Values | Mean      | Deviation | Values | Mean      | Deviation | Values | Mean      | Deviation |
| 9B           | 1       | 40     | 26        | 9         | 40     | 21        | 5         | 40     | 69        | 8         |
|              | 2       | 35     | 24        | 7         | 36     | 20        | 4         | 39     | 69        | 7         |
|              | 3       | 14     | 20        | 2         | 14     | 19        | 3         | 14     | 70        | 7         |
| _10B         | 1       | 66     | 28        | 30        | 66     | 29        | 34        | 66     | 90        | 48        |
|              | 2       | 58     | 21        | 9         | 55     | 17        | 11        | 55     | 74        | 17        |
|              | 3       | 15     | 17        | 2         | 17     | 18.       | 3         | 17     | 79        | 8         |
| <b>-</b> 11B | 1       | 102    | 28        | 25        | 102    | 28        | 40        | 102    | 62        | 11        |
|              | 2       | 88     | 21        | 7         | 91     | 19        | 15        | 101    | 62        | 11        |
|              | 3       | 62     | 17        | 4         | 63     | 18        | 4         | 60     | 58        | 9         |
| 12B          | 1       | 72     | 20        | 13        | 72     | 16        | 3         | 72     | 60        | 10        |
|              | 2       | 66     | 16        | 4         | 72     | 16        | 3         | 72     | 60        | 10        |
|              | 3       | 59     | 16        | 4         | 63     | 16        | 4         | 63     | 59        | 11        |
| L3B          | 1       | 60     | 30        | 11        | 60     | 16        | 5         | 60     | 59        | 9         |
|              | 2       | 56     | 28        | 5         | 60     | 16        | 5         | 60     | 59        | 9         |
|              | 3       | 24     | 25        | 23        | 24     | 17        | 4         | 24     | 55        | 6         |
| 148          | 1       | 83     | 34        | 22        | 83     | 22        | 8         | 83     | 73        | 12        |
|              | 2       | 72     | 29        | 7         | 72     | 20        | 4         | 81     | 73        | 12        |
|              | 3       | 11     | 19        | 1         | 12     | 19        | 4         | 12     | 65        | 4         |
| 158          | 1       | 80     | 30        | 13        | 80     | 22        | 17        | 80     | 68        | 9         |
|              | 2       | 69     | 26        | 5         | 74     | 19        | 4         | 80     | 68        | 9         |
|              | 3       | 28     | 21        | 3         | 28     | 18        | 3         | 28     | 68        | 8         |
| _16B         | 1       | 82     | 28        | 7         | 82     | 17        | 4         | 82     | 67        | 7         |
|              | 2       | 75     | 26        | 5         | 82     | 17        | 4         | 82     | 67        | 7         |
|              | 3       | 13     | 21        | 2         | 14     | 16        | 4         | 14     | 61        | 7         |

- (1) a Pb-Zn anomaly, with a maximum of 270 ppm Zn and 185 ppm
  Pb, extending for 90 metres in yellow and green-weathering
  grey shales near the base of the formation, about 1 km north
  of the Pinda Spring Ag, Pb, Zn mine on line 10B;
- (2) a Cu-Pb anomaly, with up to 290 ppm Pb, extending over 40 m at the top of the formation in interbedded yellow, grey shales and dolomites on line 11B;
- (3) a 500 ppm Cu anomaly over the Wearing Dolomite Member in the Wearing Gorge area on line 5B.

Other large but single point Cu anomalies also occur. In general, most anomalies are in the Wearing Gorge area and on lines 10B and 11B, in the south of COPLEY.

### Co, Ni, V, Mn and Mo

Mo was not detected. Other element values have a high correlation (Table 5), but vary greatly both across and along strike in the same rock type. This disguises any influence on distribution by changes in geochemical environment reflected by colour of shales, interbeds of dolomite or mineralization (Table 6).

TABLE 5
Correlation Coefficients

|            |                                       |    | •   |     |     |     |     |     |
|------------|---------------------------------------|----|-----|-----|-----|-----|-----|-----|
|            |                                       | Cu | Pb  | Zn  | Co  | Ni  | v   | Mn  |
| Cu         | •                                     | •  | .30 | .36 | .07 | .15 | .12 | .10 |
| Pb         |                                       |    |     | .40 | .25 | .30 | .31 | .34 |
| Zn         |                                       | v. |     |     | .18 | .23 | .25 | .26 |
| Co         | · · · · · · · · · · · · · · · · · · · |    |     |     |     | .65 | .58 | .37 |
| Ni         |                                       |    |     |     |     |     | .65 | .54 |
| <b>v</b> . | , ,                                   |    | •   | ·   |     |     |     | .50 |
| 14-        |                                       |    |     |     |     |     |     |     |

Means for these elements also vary greatly from line to line (Table 7). Co means are high on traverses 10B, 14B and 15B, Ni is high on 10B and 14B, V is high on 10B, 11B and 14B and Mn is high on 10B, 11B and 12B.

Cumulative frequency values on log probability scales give one population group for Mn, but anoamlous populations of Co, Ni and V are recognized, with threshold values of 30, 150 and 70 ppm respectively. Thus most of the anomalous values occur on traverses 10B, 11B and the first half of lines 14B and 15B and these lines also have a higher background mean. Because of this, anomalous values are also defined for each traverse by using the mean plus 2 standard deviations value as the threshold. The most important anomalies are:

- (1) line 14B a Mn, Co and Ni anomaly over green weathering grey shales, 400 m from the start of the traverse;
- (2) line 7B a Co, Ni and V anomaly over interbedded purple shales and dolomites, 150 m from the start of the traverse;
- (3) line 4B a Mn anomaly over purple and yellow shales associated with above background values of Cu, Pb and Zn, 80 m from the start of the traverse;
- (4) line 15B anomalous Mn and Co values in the lower part of the formation associated with purple shales, 70 m from the start of the traverse;
- (5) line 1B a V anomaly in interbedded purple shales and dolomite, 290 m from the start of the traverse. This anomaly was not repeated on line 2B.

TABLE 6
Co, Ni, V and Mn means in Shales of the Bunyeroo Formation

| Location & Lith-<br>ology of Samples | Number of Samples | <u>Co</u> | Ni | <u>v</u> | Mn  |
|--------------------------------------|-------------------|-----------|----|----------|-----|
| Purple Shale (1B-8B)                 | 85                | 17        | 26 | 77       | 220 |
| Purple Shale (9B-16B)                | 261               | 21        | 52 | 106      | 405 |
| Green Shale (1B-8B)                  | 22                | 12        | 23 | 81       | 185 |
| Green Shale (9B-16B)                 | 19                | 22        | 58 | 103      | 580 |
| World Average Shales                 |                   | 19        | 68 | 130      | 850 |

#### SUMMARY AND RECOMMENDATIONS

Widespread soil sampling in the Bunyeroo Formation confirms the association of mineralization with green shale interbeds which may occur anywhere within the formation, but are generally thin and discontinuous along strike. These shales are more common and sometimes attain greater thickness in three stratigraphic positions within the formation. These are:

- (1) near the base of the formation;
- (2) in the same position as the Wearing Dolomite Member, beneath a distinctive interbedded dolomite and shale unit. This section contains the most important copper mineralization;
- (3) near the top of the formation in the gradational contact with the Wonoka Formation.

There is a definite trend of more prevalent and thicker greenshale beds with associated anomalous values in the southern areas of COPLEY, defined by the traverse lines in the Wearing Gorge area and lines 10B and 11B. Comparison between the background means for lines shows a trend for lower Cu values in the south and lower Zn

## TABLE 7

Line Mean Mean in Purple shales

|      |                   | Type o | <u>Co</u> |                       | <u>Ni</u>              | •                     |             | <u>v</u>              | <u>M</u>   | <u>1n</u>             |
|------|-------------------|--------|-----------|-----------------------|------------------------|-----------------------|-------------|-----------------------|------------|-----------------------|
| Line | No. of<br>Samples | Mean   | Mean      | Standard<br>Deviation | Mean                   | Standard<br>Deviation | Mean        | Standard<br>Deviation | Mean       | Standard<br>Deviation |
| 1B-  | 84<br>12          | 1 2    | 9<br>8    | 8<br>6                | 17<br>14               | 8<br>6                | 38<br>35    | 17<br>15              | 190<br>195 | 75<br>45              |
| 2B   | 88                | 1 2    | 14        | 15<br>Insuffic        | 27<br>ient Sam         | 15<br>ples            | 73          | 25                    | 230        | 90                    |
| 3B   | 93                | 1 2    | 11 -      | 12<br>Insuffic        | 28<br>i <b>ent</b> Sam | 10<br>ples            | 81          | 17                    | 255        | 85                    |
| 4B   | 112<br>12         | 1 2    | 16<br>25  | 12<br>9               | 27<br>29               | 11<br>4               | 89<br>89    | 24<br>10              | 260<br>235 | 110<br>63             |
| 5B   | 100<br>23         | 1 2    | 14<br>17  | 11<br>10              | 30<br>31               | 17<br>11              | 88<br>91    | 20<br>10              | 200<br>215 | 105<br>. 55           |
| 6B . | 78<br>78          | 1 2    | 16<br>17  | 10<br>11              | 32<br>30               | 17<br>17              | 91<br>92    | 23<br>21              | 255<br>245 | 105<br>95             |
| 7B . | 72                | 1 2 .  | 14        | 11<br>Insuffic        | 25<br>ient Sam         | 10<br>oles            | 88          | 26                    | 225        | 70                    |
| 8B   | <sup>.</sup> 78   | 1 2    | 16        | 12<br>Insuffic        | 29<br>ient Samp        | 10<br>oles            | 93          | 27                    | 245        | 95                    |
| 9B   | 40<br>20          | 1 2    | 20<br>21  | 20<br>15              | 58<br>55               | 20<br>22              | 100<br>95   | 17<br>10              | 335<br>295 | 115<br>90             |
| 108  | 66<br>15          | 1 2    | 26<br>20  | 13<br>13              | 75<br>68               | 23<br>14              | 132<br>120  | 47<br>25              | 675<br>700 | 300<br>255            |
| 11B  | 102<br>62         | 1 2    | 21<br>24  | 15<br>13              | 52<br>56               | 23<br>20              | 112<br>109  | 32<br>22              | 660<br>630 | 250<br>200            |
| 12B  | 72<br>59          | 1 2    | 20<br>19  | 12<br>10              | 46<br>45               | 21<br>20              | 102<br>100  | 25<br>18              | 450<br>475 | 270<br>275            |
| 13B  | 60<br>22          | 1 2    | 16<br>20  | 11<br>11              | 30<br>31               | 20<br>15              | 97<br>97    | 17<br>7               | 245<br>220 | 70<br>80              |
| 14B  | 83<br>10          | 1 2    | 32<br>20  | 23<br>13              | 65<br>53               | 27<br>22              | 118<br>128  | 28<br>26              | 390<br>300 | 160<br>0              |
| 15B  | 80<br><b>54</b>   | 1 2    | 27<br>25  | 21<br>18              | 52<br>56               | 22<br>19              | 106)<br>106 | 22<br>21              | 350<br>320 | 170<br>90             |
| 16B  | <b>82</b><br>19   | 1 2    | 19<br>17  | 11<br>10              | 45<br>48               | 19<br>21              | 100<br>99   | 8<br>4                | 295<br>290 | 65<br>30              |

values in the southwest of COPLEY (Fig. 6).

As there is insufficient coverage of the Copley sheet by the soil traverses (one for about every 45 km of strike), smaller areas of interest are not delineated. The variability in geochemistry and geology along strike in the Wearing Gorge area indicates than an interval of 15 km is most suitable for the purposes of this project. Further work, involving soil sampling on traverses at this interval for delineating areas of greater potential, should be over the areas of green shale interbeds. At this stage of the sampling programme, the Pinda Springs area, where a Pb-Zn anomaly containing 170 ppm Pb was found, is the most, promising for further investigation.

27/5/77

BAE:JK

B. EBERHARD

#### REFERENCES

- COATS, R.P., 1973: COPLEY 1:250 000 sheet geol. Atlas of S. Aust., Geol Surv. S. Aust.
- EXOIL N.L., and TRANSOIL N.L., S.A. Dept. of Mines open file Env. 1693.
- JOERESKOG, K.G., KLOVAN, J.E., & REYMENT, R.A., 1976: Geological Factor Analysis, Elsevier, Amsterdam.
- MT. ISA MINES LTD., S.A. Dept. of Mines open file Env. 928.
- NIE, N.H., HULL, C.H., JENKINS, J.G., STEINBRENNER, K., and BENT, D.H., 1970:

Statistical Package for the Social Sciences. McGraw Hill, New York.

- S.A. BARYTES LTD., 1971: S.A. Dept. of Mines open file Env. 1650.
- TENNANT, G.B., & WHITE, M.L., 1959: Study of the Distribution of some Geochemical Data. Econ.Geol. 54,pp.1281-1290.
- THOMSON, B.P., 1965: Geology and Mineralization of South Australia:

  in McANDREW, J. (Ed.), Geology of Australian Ore

  Deposits, 8th C'wealth Min. Metall. Cong., 1.

#### **APPENDIX**

#### Factor Analysis

#### Introduction

The effect of mineralization in an element value is obscured by many geological factors which have an unequal effect from sample to sample. In this project, such factors are the geochemistry of the major rock types, and surface environment processes such as development of soils or leaching by groundwater. In an attempt to statistically remove these effects to allow an unbiased comparison between samples, classical R-mode factor analysis was used with regression analysis on the multi-element data collected. This produced a predicted element value for each sample and a resultant residual. As mineralization is a statistical rarity, its effects are not likely to be seen in the factors, but may reflect in the residual values.

#### Method

In this project, the raw data were log transformed before analysis to make the metal distributions approximate more closely to a normal distribution, and the method of rotation was varimax orthogonal rotation. All other choices and decisions in the use of factor analysis for this project follow the limitations of the Statistical Package for the Social Sciences factor analysis programme.

#### Results

Three factors were extracted and Table 8 shows how much of the element variability they explain. The communality is the percentage of the total variance explained by the combined effect of the three factors.

TABLE 8

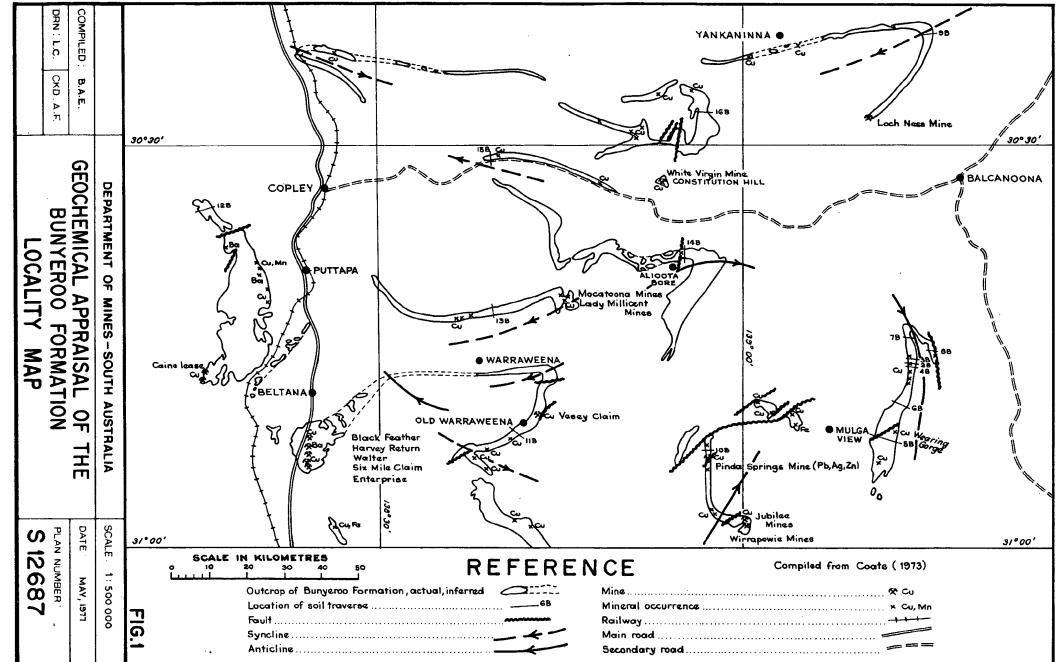
Variance and Communality Tables

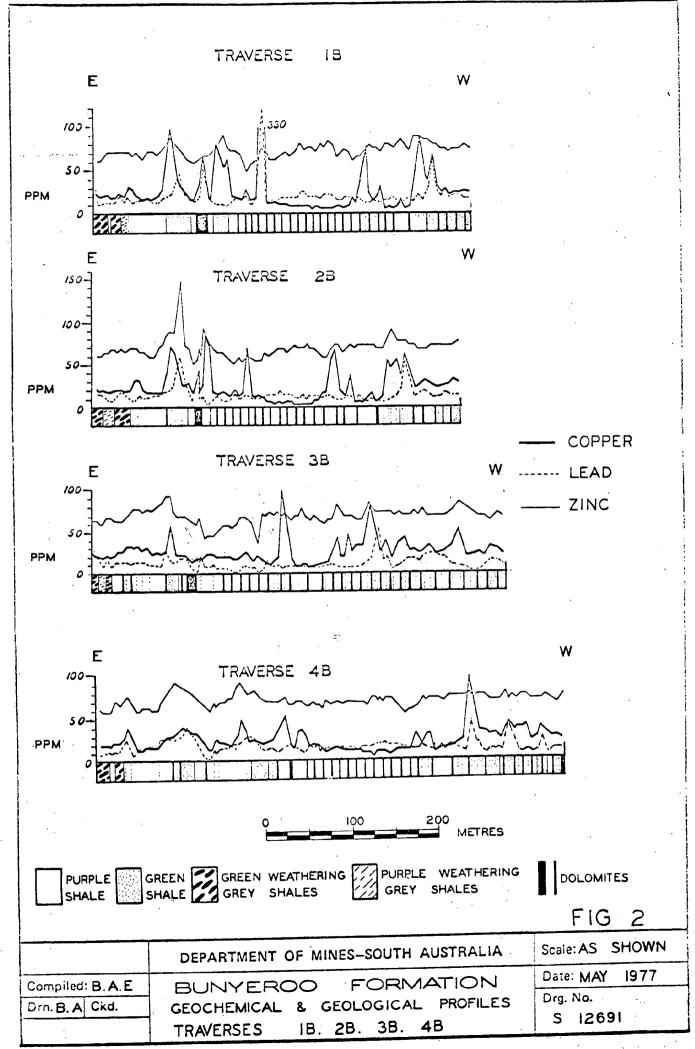
| Factor |     | <pre>% Common Variance</pre> |
|--------|-----|------------------------------|
| 1      |     | 73.00                        |
| 2      | • • | 21.40                        |
| 3      |     | 5.60                         |

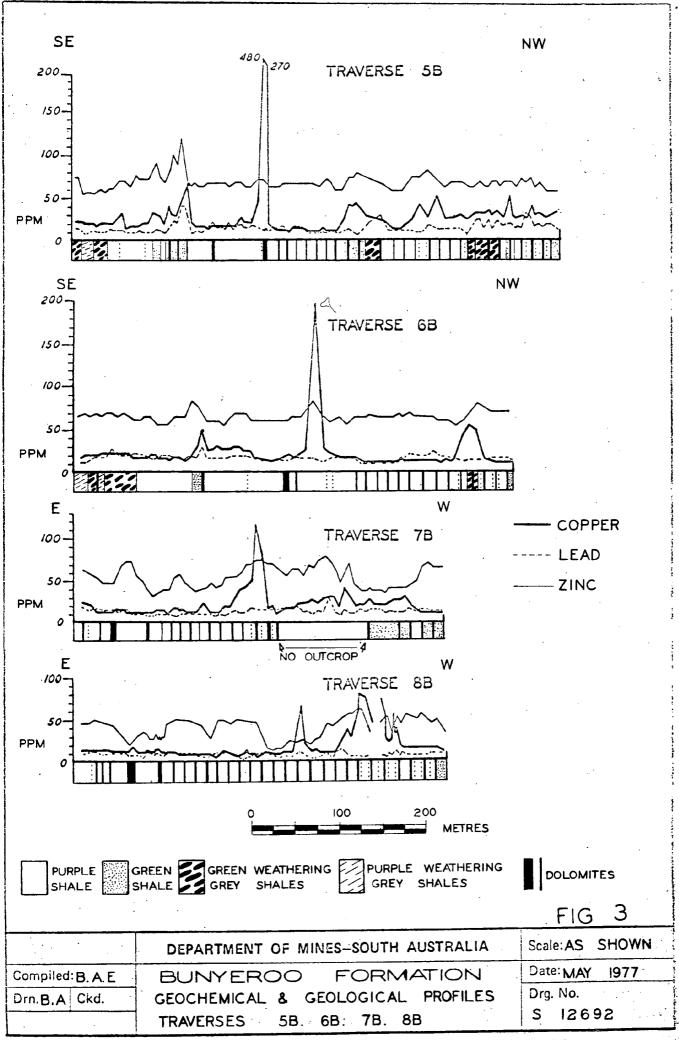
| Variable | Communality |
|----------|-------------|
| Cu       | .31         |
| Pb       | . 42        |
| Zn       | .43         |
| Co       | .61         |
| Ni       | .73         |
| v        | .61         |
| Mn       | .46         |

Table 9 shows the factor matrix. Each factor matrix coefficient is a correlation between the factors and variables and its square (given in brackets) shows the proportion of the total variance accounted for by each factor.

TABLE 9
Factor Matrix

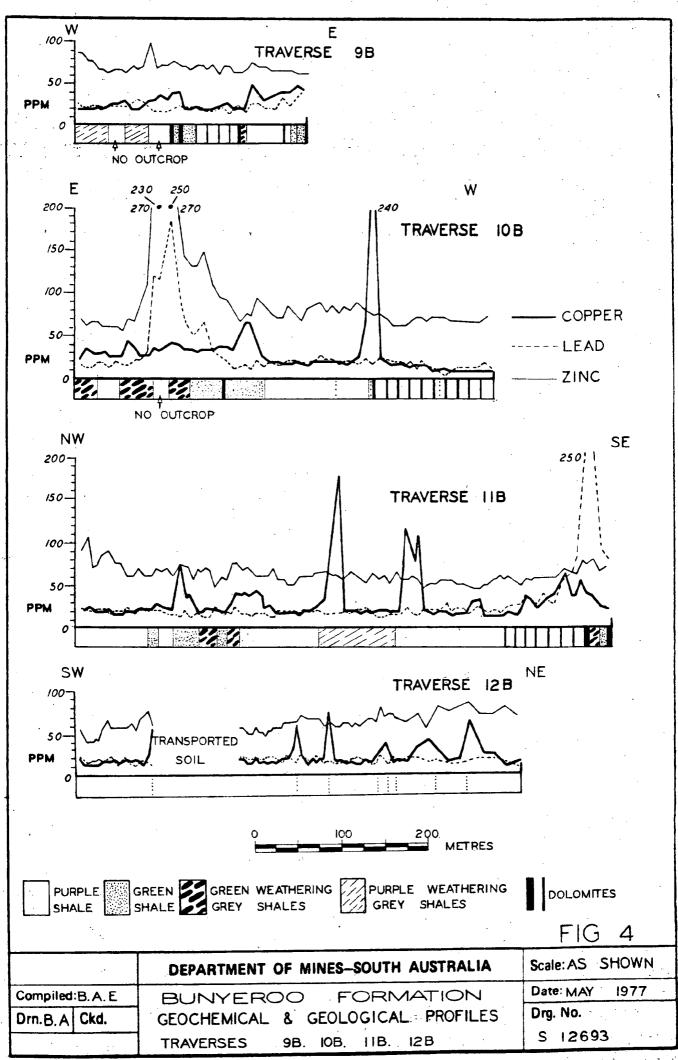

|     | Factor 1      | Factor 2        | Factor 3            |
|-----|---------------|-----------------|---------------------|
| Cu  | 1038 - (0.00) | +.552 ·(0.30) · | <b>₽028 (,0.00)</b> |
| Pb  | .254 (0.06)   | .508 (0.26)     | .312 (0.10)         |
| Zn  | .167 (0.03)   | .616 (0.38)     | .156 (0.02)         |
| Co  | .764 (0.58)   | .119 (0.01)     | .121 (0.01)         |
| Ni  | .835 (0.70)   | .147 (0.02)     | .102 (0.01)         |
| v . | .747 (0.56)   | .156 (0.02)     | .161 (0.03)         |
| Mn  | .547 (0.30)   | .156 (0.02)     | .373 (0.14)         |

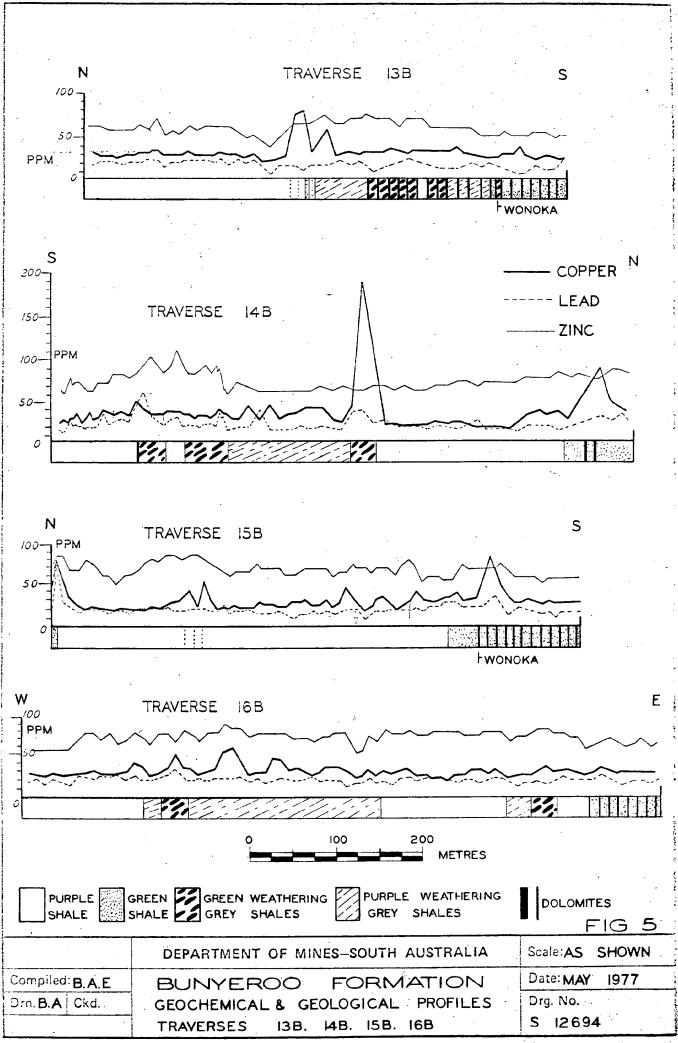

Factor 1 largely affects the variance of Co, Ni, V and Mn, factor 2 affects to a much smaller extent the variance of Cu, Pb and Zn, and factor 3 affects the variability of Pb and Mn.

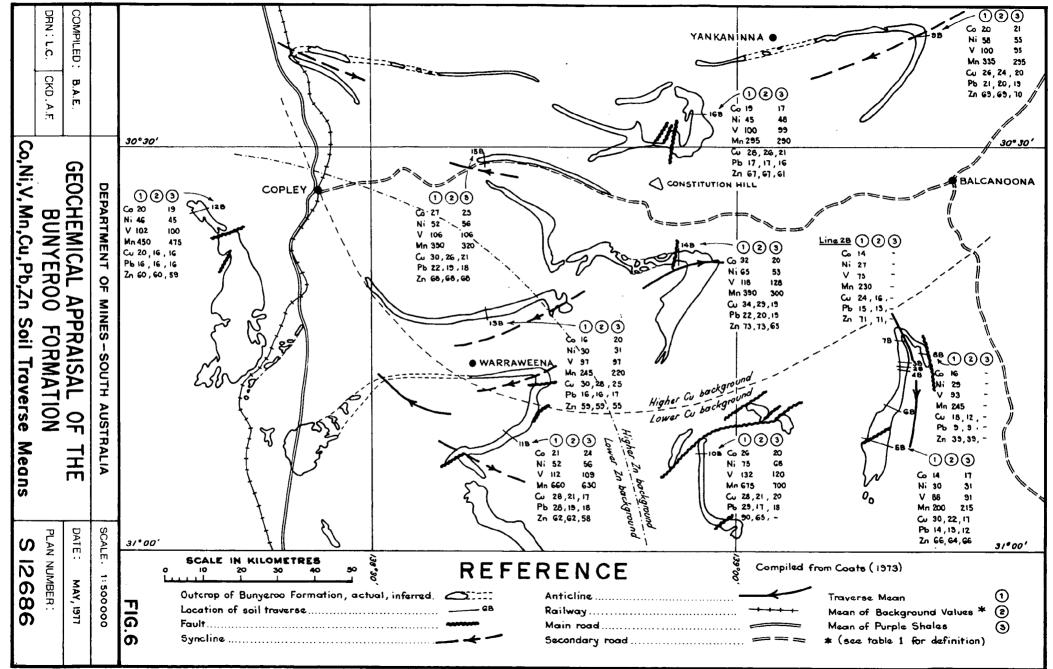

#### Discussion

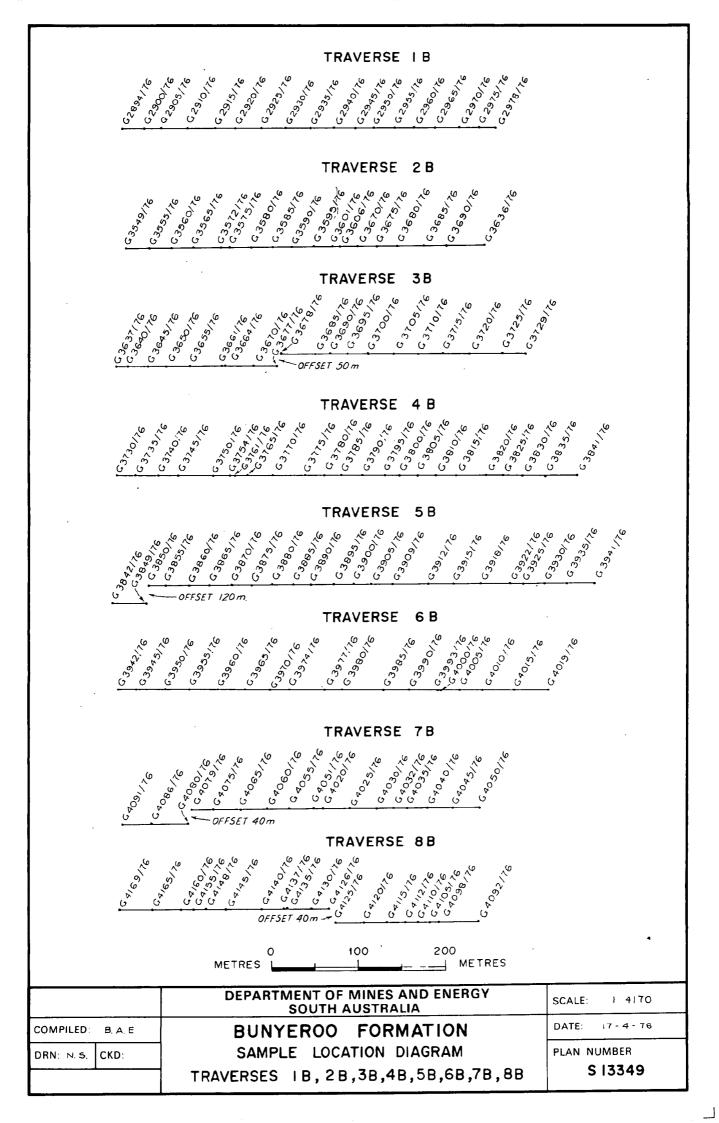
The extracted factors are not obviously related to any geological feature. It is difficult to extract factors related to the different lithologies in this project because many element values represent the chemistry of differing combinations of rock types. A different factor model, probably containing more factors, is needed to explain the common variance in terms that separate any geological variables which impose a common variance on the data.

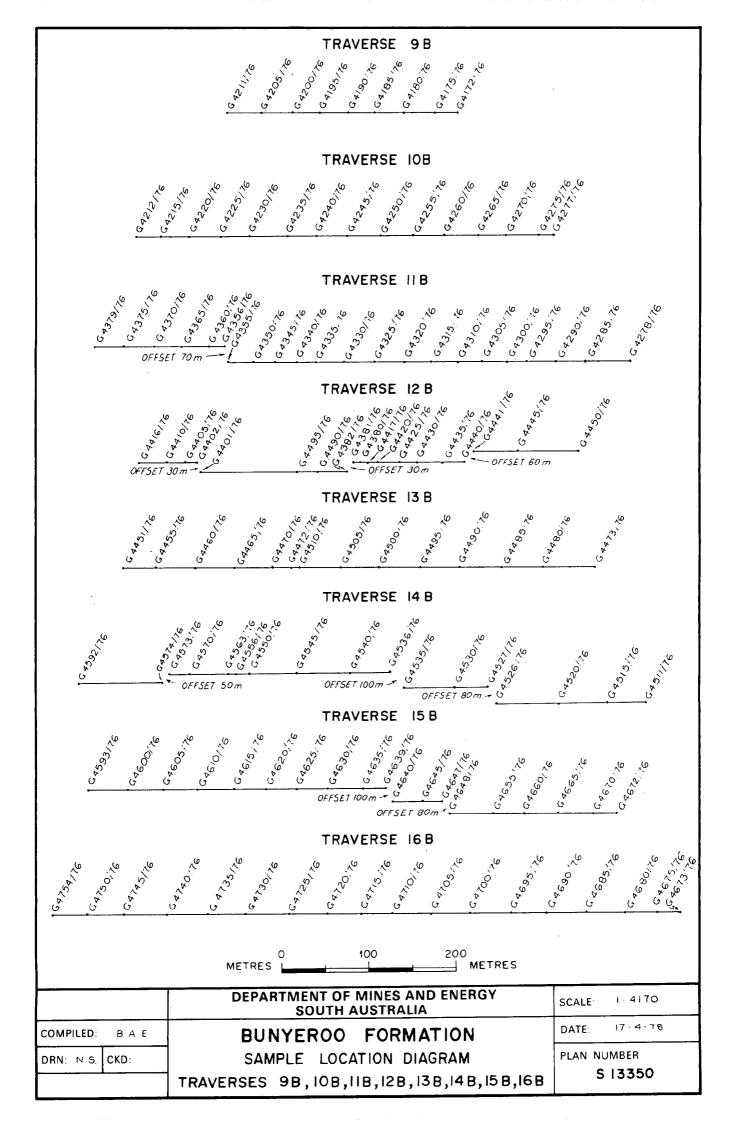
The top 5% of large residuals are considered to be significant. The residuals delineate values of each element which cannot be explained in terms of the factors, and account for the anomalously low population of Zn values on lines 7B and 8B. In this project, the residuals define values which are significantly higher or lower than background, or element values which are at background, but show an unusual element ratio with an associated element (e.g. a negative Zn residual is often associated with an above background Pb value). The residuals are generally associated with anomalies defined using other methods or defined scattered single point areas of interest, so factor analysis did not result in any new useful information.





ţ. .'


[i]:











## ADDENDUM TO REPORT BOOK 77/58

## TRAVERSE 1B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G2894/76   | 0-4.5 m | G2923/76   | 165.0   | G2952/76   | 325.0   |
| 95 -       | - 9.0   | 24         | 171.0   | 53         | 330.0   |
| 96         | 13.5    | 25         | 177.0   | 54         | 335.0   |
| 97         | 18.0    | 26         | 183.5   | 55         | 340.0   |
| 98         | 22.5    | 27         | 189.0   | 56         | 345.0   |
| 99         | 27.0    | 28         | 194.0   | 57         | 350.0   |
| G2900/76   | 31.5    | 29         | 201.0   | 58         | 355.0   |
| 1          | 36.0    | G2930/76   | 207.0   | 59         | 360.0   |
| 2          | . 39.5  | 31         | 213.0   | G2960/76   | 365.0   |
| 3          | 44.0    | 32         | 218.5   | 61         | 370.0   |
| 4          | . 50.0  | 33         | 225.0   | 62         | 375.0   |
| 5          | 55.5    | 34         | 231.0   | 63         | 380.0   |
| 6          | 62.0    | 35         | 237.0   | 64         | 385.0   |
| 7          | 68.0    | 36         | 243.0   | 65         | 390.0   |
| ~ 8        | 74.0    | 37         | 249.0   | 66         | 395.0   |
| 9          | 81.0    | 38         | 255.0   | 67         | 402.0   |
| G2910/76   | 88.0    | 39         | 260.0   | 68         | 408.0   |
| 11         | 95.0    | G2940/76   | 265.0   | 69         | 414.0   |
| 12         | 101.0   | 41         | 270.0   | G2970/76   | 419.0   |
| 13         | 107.0   | 42         | 275.0   | 71         | 424.0   |
| 14         | 113.0   | 43         | 280.0   | 72         | 429.0   |
| 15         | 119.0   | 44         | 285.0   | 73         | 434.0   |
| 16         | 125.0   | 45         | 290.0   | 74         | 439.0   |
| 17         | 131.0   | 46         | 295.0   | 75         | 444.0   |
| 18         | 135.0   | 47         | 300.0   | 76         | 451.0   |
| 19         | 139.5   | 48         | 305.0   | 77         | 458.0   |
| G2920/76   | 143.0   | 49         | 310.0   | 78         | 465.0   |
| 21         | 151.5   | G2950/76   | 315.0   | •          |         |
| 22         | 160.0   | 51         | 320.0   |            |         |
|            |         |            |         |            |         |

## TRAVERSE 2B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G3549/76   | 0-5.5 m | G3579/76   | 154.0   | G3609/76   | 287.5   |
| G3550/76   | - 11.5  | G3580/76   | 162.0   | G3610/76   | 292.0   |
| 51         | - 16.5  | 81         | 171.0   | 11         | 297.0   |
| 52         | - 21.5  | 82         | 175.0   | 12         | 302.5   |
| 53         | 26.5    | 83         | 180.0   | 13         | 307.5   |
| 54         | 31.5    | 84         | 185.0   | 14         | 312.5   |
| 55         | 36.5    | 85         | 190.0   | 15         | 317.5   |
| 56         | 42.5    | 86         | 195.0   | 16         | 322.5   |
| 57         | 48.0    | 87         | 200.0   | 17         | 328.0   |
| 58         | 54.0    | 88         | 205.0   | 18         | 334.0   |
| 59         | 59.5    | 89         | 210.0   | 19         | 339.5   |
| G3560/76   | 65.0    | G3590/76   | 215.0   | G3620/76   | 345.0   |
| 61         | 71.0    | 91         | 220.0   | 21         | 401.0   |
| 62         | 76.5    | 92         | 225.0   | 22         | 406.5   |
| 63         | 81.5    | 93         | 230.0   | 23         | 412.5   |
| 64         | 86.0    | 9 4        | 234.5   | 24         | 418.0   |
| 65         | 91.0    | 95         | 238.5   | 25         | 423.5   |
| 66         | 96.5    | 96         | 243.0   | 26         | 429.0   |
| 67         | 102.0   | 97         | 247.0   | 27         | 435.0   |
| 68         | 108.0   | 98         | 251.0   | 28         | 440.0   |
| 69         | 113.5   | 99         | 255.5   | 29         | 447.0   |
| G3570/76   | 119.0   | G3600/76   | 259.5   | G3630/76   | 453.0   |
| 71         | 125.0   | 1          | 264.0   | 31         | 461.0   |
| 72         | 131.5   | 2          | 265.5   | 32         | 469.0   |
| 73         | 132.5   | 3          | 267.5   | 33         | 477.5   |
| 74         | 133.5   | 4          | 269.0   | 34         | 486.0   |
| 75         | 134.5   | 5          | 271.0   | 35         | 495.0   |
| 76         | 137.5   | 6          | 273.0   | G3636/76   | 504.0   |
| 77         | 142.5   | 7          | 277.0   |            |         |
| 78         | 148.5   | 8          | 282.0   |            |         |

## TRAVERSE 3B

| Sample No. | Co-ords | Sample No. | <u>Co-ords</u> | Sample No. | Co-ords |
|------------|---------|------------|----------------|------------|---------|
| G3637/76   | 0-1 m   | G3669/76   | 160.0          | G3701/76   | 318.0   |
| 38         | 4.0     | G3670/76   | 165.0          | 2          | 323.0   |
| 39         | 9.0     | 71         | 170.0          | 3          | 328.0   |
| G3640/76   | . 14.0  | . 72       | 175.0          | 4          | 336.0   |
| 41         | · 19.0  | 73         | 180.0          | 5          | 344.0   |
| ` 42       | 24.0    | 74         | 185.0          | 6          | 351.0   |
| 43         | 29.0    | 75         | 190.0          | 7          | 358.0   |
| 44         | 34.0    | 76         | 195.0          | 8          | 366.0   |
| 45         | 39.0    | 77         | 200.0          | 9          | 372.0   |
| 46         | 44.0    | 78         | 205.0          | G3710/76   | 378.0   |
| 47         | 49.0    | 79         | 210.0          | 11         | 383.0   |
| 48         | 54.0    | G3680/76   | 215.0          | 12         | 389.0   |
| 49         | 59.0    | 81         | 220.0          | 13         | 394.0   |
| G3650/76   | 64.0    | 82         | 225.0          | 14         | 400.0   |
| 51         | 71.0    | 83         | 230.0          | 15         | 406.0   |
| 52         | 76.0    | 84         | 235.0          | 16         | 411.0   |
| 53         | 82.0    | 85         | 240.0          | 17         | 417.0   |
| 54         | 87.5    | 86         | 245.0          | 18         | 424.0   |
| 55         | 93.0    | 87         | 250.0          | 19         | 431.0   |
| 56         | 99.0    | 88         | 255.0          | G3720/76   | 438.0   |
| 57         | 104.0   | 89         | 260.0          | 21         | 446.0   |
| 58         | 110.0   | G3690/76   | 265.0          | 22         | 455.0   |
| 59         | 117.0   | 91         | 270.0          | 23         | 462.0   |
| G3660/76   | 123.0   | 92         | 275.0          | 24         | 470.0   |
| 61         | 129.0   | 93         | 279.0          | 25         | 473.0   |
| 62         | 130.5   | 94         | 282.0          | 26         | 486.0   |
| 63         | 132.0   | 95         | 287.5          | 27         | 493.0   |
| 64         | 133.0   | 96         | 293.0          | 28         | 500.0   |
| 65         | 140.0   | 97         | 298.0          | G3729/76   | 509.0   |
| 66         | 145.0   | 98         | 303.0          |            |         |
| 67         | 150.0   | 99         | 308.0          |            |         |
| 68         | 155.0   | G3700/76   | 313.0          |            |         |

TRAVERSE 4B

| Sample No. | Co-ords    | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|------------|------------|---------|------------|---------|
| G3730/76   | 0.5 m      | G3767/76   | 179     | G3804/76   | 378     |
| 31         | 10         | 68         | 187     | 5          | 383     |
| 32         | · 15       | 69         | 195     | 6          | 388     |
| 33         | · 20       | G3770/76   | 202.5   | 7          | 390     |
| 34         | 25         | 71         | 210     | 8          | 394     |
| 35         | 30         | 72         | 218     | 9          | 399     |
| 36         | 35         | 7,3        | 226     | G3810/76   | 404     |
| 37         | 40         | 74         | 233     | 11         | 409     |
| 38         | 45         | 75         | 238     | 12         | 413     |
| 39         | 50         | 76         | 243     | 13         | 417     |
| G3740/76   | 55         | 77         | 248     | 14         | 421     |
| 41         | 60         | 78         | 253     | 15         | 429     |
| 42         | 65         | 79         | 258     | 16         | 437     |
| 43         | <b>7</b> 1 | G3780/76   | 263     | 17         | 445     |
| 44         | 77         | 81         | 268     | 18         | 453     |
| 45         | 82         | 82         | 273     | 19         | 461     |
| 46         | 90         | 83         | 278.5   | G3820/76   | 466     |
| 47         | 98         | 84         | 279.5   | 21         | 471     |
| 48         | 106        | 85         | 281.0   | 22         | 476     |
| 49         | 115        | 86         | 282     | 23         | 481     |
| G3750/76   | 124        | 87         | 290     | 24         | 486     |
| 51         | 133        | 88         | 298     | 25         | 491     |
| 52         | 137.5      | 89         | 306     | 26         | 496     |
| 53         | 142.5      | G3790/76   | 312     | 27         | 501     |
| 54         | 146.5      | 91         | 318     | 28         | 506     |
| 55         | 146.5      | 92         | 325     | 29         | 508     |
| 56         | 146.5      | 93         | 331     | G3830/76   | 510     |
| 57         | 146.5      | 94         | 336     | 31         | 514     |
| 58         | 146.5      | 95         | 341     | 32         | 519     |
| 59         | 146.5      | 96         | 346     | 33         | 524     |
| G3760/76   | 148.5      | 97         | 348     | 34         | 530     |
| 61         | 150        | 98         | 350     | 35         | 536     |
| 62         | 154.5      | 99         | 354     | 36         | 542     |
| 63         | 159        | G3800/76   | 358     | 37         | 549     |
| 64         | 164        | 1          | 363     | 38         | 555     |
| 65         | 169        | 2          | 368     | 39         | 561     |
| 66         | 174        | 3          | 373     | G3840/76   | 569     |
|            |            |            |         | G3841/76   | 577     |

#### TRAVERSE 5B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G3842/76   | 0-5     | G3875/76   | 177     | G3908/76   | 344     |
| 43         | - 11    | 76         | 182.5   | 9          | 349     |
| 44         | - 15    | 77         | 187.5   | G3910/76   | 364     |
| 45         | - 21    | 78         | 192.5   | 11         | 379     |
| 46         | - 26    | 79         | 198     | 12         | 393     |
| 47         | 31      | G3880/76   | 203     | 13         | 406     |
| 48         | 36      | 81         | 208.5   | 14         | 419     |
| 49         | 41      | 82         | 213.5   | 15         | 428     |
| G3850/76   | 46      | 83         | 219     | 16         | 438     |
| 51         | 52      | 84         | 224     | 17         | 448     |
| 52         | 57.5    | 85         | 229     | 18         | 458     |
| 53         | 62      | 86         | 234     | 19         | 468     |
| 54         | 68      | 87         | 239     | G3920/76   | 478     |
| 55         | 72      | 88         | 240     | 21         | 488     |
| 56         | 78      | 89         | 241     | 22         | 498     |
| 57         | 83      | G3890/76   | 247.5   | 23         | 503     |
| 58         | 88      | 91         | 255     | 24         | 508     |
| 59         | 93      | 92         | 261     | 25         | 513     |
| G3860/76   | 98      | 93         | 266     | 26         | 518     |
| 61         | 104     | 94         | 271     | 27         | 523     |
| 62         | 109     | 95         | 276     | 28         | 529     |
| 63         | 114     | 96         | 281     | 29         | 534     |
| 64         | 120     | 97         | 287     | G3930/76   | 539     |
| 65         | 125     | 98         | 292     | 31         | 544     |
| 66         | 130     | 99         | 297     | 32         | 550     |
| 67         | 135     | G3900/76   | 302     | 33         | 555     |
| 68         | 141     | 1          | 307.5   | 34         | 560     |
| 69         | 146     | 2          | 312.5   | 35         | 566     |
| G3870/76   | 151     | 3          | 318     | 36         | 571     |
| 71         | 156.5   | 4          | 323     | 37         | 576     |
| 72         | 162.5   | 5          | 328.5   | 38         | 581     |
| 73         | 167     | 6 .        | 333.5   | 39         | 586     |
| 74         | 172     | 7          | 338.5   | G3940/76   | 591     |
|            |         |            |         | 41         | 597     |

## TRAVERSE 6B

| Sample No. | Co-ords  | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|----------|------------|---------|------------|---------|
| G3942/76   | 0 - 6.5m | G3968/76   | 184     | G3994/76   | 397     |
| 43         | 13.5     | 69         | 192     | 95         | 397     |
| 44         | 20.5     | G3970/76   | 198     | 96         | 397     |
| 45         | 27.5     | 71         | 205     | 97         | 397     |
| 46         | - 34     | 72         | 212     | 98         | 397     |
| 47         | 41       | 73         | 219     | 99         | 397     |
| 48         | 47.5     | 74         | 222     | G4000/76   | 399     |
| 49         | 54.5     | 75         | 236     | 1          | 401     |
| G3950/76   | 61.5     | 76         | 251     | . 2        | 403.    |
| 51         | 68.5     | 77         | 264     | 3          | 435     |
| 52         | 75       | 78         | 268     | 4          | 413     |
| 53         | 82       | 79         | 275     | 5          | 421     |
| 54         | 89       | G3980/76   | 285     | 6          | 428     |
| 55         | 95       | 81         | 295     | 7          | 435     |
| 56         | 102      | 82         | 305     | 8          | 442     |
| 57         | 109      | 83         | 315     | 9          | 449     |
| 58         | 116      | 84         | 325     | G4010/76   | 454     |
| 59         | 123      | 85         | 335     | 11         | 462     |
| G3960/76   | 130      | 86         | 345     | 12         | 469     |
| 61         | 137      | 87         | 355     | 13         | 478     |
| 62         | 144      | 88         | 365     | 14         | 486     |
| 63         | 151      | 89         | 365     | 15         | 494     |
| 64         | 157      | G3990/76   | 365     | 16         | 503     |
| 65         | 164      | 91         | 365     | 17         | 516     |
| 66         | 171      | 92         | 365     | 18         | 528     |
| 67         | 177      | 93         | 378     | G4019/76   | 541     |
|            |          |            |         |            |         |

## TRAVERSE 7B

| Sample No. | Co-ords  | Sample No. | Co-ords  | Sample No. | Co-ords |
|------------|----------|------------|----------|------------|---------|
| G4020/76   | 246-253m | G4044/76   | 406      | G4068/76   | 132     |
| 21         | · 259    | 45         | 413      | 69         | 125     |
| 22         | 266      | 46         | 420      | G4070/76   | 120     |
| 23         | 272      | 47         | 426      | 71         | 120     |
| 24         | 279      | 48         | 432      | 72         | 120     |
| 25         | · 285    | 49         | 439      | 73         | 120     |
| 26         | 292      | G4050/76   | 446      | 74         | 120     |
| 27         | 298      | 51         | 246-240m | 75         | 114     |
| 28         | 304      | 52         | 234      | 76         | 107     |
| 29         | 311      | 53         | - 228    | 77         | 101     |
| G4030/76   | 317      | 54         | 221      | 78         | 94      |
| 31         | 323      | 55         | · 215    | 79         | 87      |
| 32         | 330      | 56         | 209      | G4080/76   | 81      |
| 33         | 336      | 57         | 201      | 81         | 75      |
| 34         | 343      | 58         | 195      | 82         | . 69    |
| 35         | 351      | 59         | 189      | 83         | 62      |
| 36         | 355      | G4060/76   | 183      | 84         | 55      |
| 37         | 362      | 61         | 176      | 85         | 50      |
| 38         | 370      | 62         | 171      | 86         | 43      |
| 39         | 375      | 63         | 164      | 87         | 37      |
| G4040/76   | 381      | 64         | 158      | 88         | 28      |
| 41         | 387      | 65         | 151      | 89         | 18      |
| 42         | 394      | 66         | 144      | G4090/76   | 9       |
| 43         | 400      | 67         | 139      |            | 0-9     |

### TRAVERSE 8B

| Sample No. | Co-ords | Sample No. | Co-ords                                      | Sample No. | Co-ords |
|------------|---------|------------|----------------------------------------------|------------|---------|
| G4092/76   | 450     | G4118/76   | 316                                          | G4144/76   | 141     |
| 93         | 441     | 19         | 310                                          | 45         | 133     |
| 94         | 431     | G4120/76   | 304                                          | 46         | 124     |
| 95         | 421     | 21         | 295                                          | 47         | 115     |
| 96         | 414     | 22         | 289                                          | 48         | 107     |
| 97         | 404     | 23         | 283                                          | 49         | 105     |
| 98         | 396     | 24         | 275                                          | G4150/76   | 103     |
| 99         | 394     | 25         | 271                                          | 51         | 102     |
| G4100/76   | 392     | 26         | 264                                          | 52         | 101     |
| 1          | 389     | 27         | 258                                          | 53         | 99      |
| 2          | 387     | 28         | 251                                          | 54         | 97      |
| 3          | 386     | 29         | 244                                          | 55         | 95      |
| 4          | 384     | G4130/76   | 238                                          | 56         | 93      |
| 5          | 382     | 31         | 231                                          | 5 <b>7</b> | 92      |
| 6          | 381     | 32         | 226                                          | 58         | 85      |
| 7          | 379     | 33         | 219                                          | 59         | 81      |
| 8          | 377     | 34         | 212                                          | G4160/76   | 77      |
| 9          | 370     | 35         | 206                                          | 61         | 73      |
| G4110/76   | MISSING | 36         | 204                                          | 62         | 69      |
| 11         | MISSING | 37         | 202                                          | 63         | 59      |
| 12         | 356     | 38         | 194                                          | 64         | 49      |
| 13         | 349     | 39         | 185                                          | 65         | 39      |
| 14         | 342     | G4140/76   | 176                                          | 66         | 30      |
| 15         | 335     | 41         | 168                                          | 67         | 20      |
| 16         | 328     | 42         | 159                                          | 68         | 10      |
| 17         | 321     | 43         | 150                                          | G4169/76   | 0       |
|            |         |            | <u>.                                    </u> | 9          |         |

## TRAVERSE 9B

| Sample No. | <u>Co-ords</u> | Sample No. | <u>Co-ords</u> |
|------------|----------------|------------|----------------|
| G4172/76   | 280            | G4192/76   | 132            |
| 73         | 273            | 93         | 125            |
| 74         | 264            | 94         | 118            |
| 75         | 255            | 95         | 111            |
| 76         | 247            | 96         | 104            |
| 77         | 239            | 97         | 97             |
| 78         | 231            | 98         | 90             |
| 79         | 224            | 99         | 82             |
| G4180/76   | 216            | G4200/76   | 75             |
| 81         | 208            | 1          | 67             |
| 82         | 201            | 2          | 59             |
| 83         | 194            | 3          | 52             |
| 84         | 188            | 4          | 45             |
| 85         | 181            | 5          | 38             |
| 86         | 175            | 6          | 31             |
| 87         | 168            | 7          | 25             |
| 88         | 160            | 8          | 18             |
| 89         | 154            | 9          | 12             |
| G4190/76   | 147            | 10         | 6              |
| 91         | 140            | 11         | 0              |

## TRAVERSE 10B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G4212/76   | 7       | G4234/76   | 178     | G4256/76   | 352     |
| 13         | 14      | 35         | 188     | 57         | 361     |
| 14         | 21      | 36         | 195     | 58         | 370     |
| 15         | 28      | 37         | 203     | 59         | 379     |
| 16         | 35      | 38         | 210     | G4260/76   | 387     |
| 17         | 43      | 39         | 217     | 61         | 395     |
| 18         | 51      | G4240/76   | 225     | 62         | 403     |
| 19         | 59      | 41         | 233     | 63         | 410     |
| G4220/76   | 65      | 42         | 241     | 64         | 417     |
| 21         | 74      | 43         | 249     | 65         | 423     |
| 22         | 82      | 44         | 257     | 66         | 430     |
| 23         | 90      | 45         | 264     | 67         | 436     |
| 24         | 97      | 46         | 273     | 68         | 443     |
| 25         | 105     | 47         | 281     | 69         | 451     |
| 26         | 112     | 48         | 289     | G4270/76   | 460     |
| 27         | 120     | 49         | 296     | 71         | 469     |
| 28         | 128     | G4250/76   | 304     | 72         | 477     |
| 39         | 135     | 51         | 312     | 73         | 484     |
| G4230/76   | 144     | 52         | 321     | 74         | 492     |
| 31         | 152     | 53         | 328     | 75         | 500     |
| 32         | 160     | 54         | 336     | 76         | 509     |
| 33         | 169     | 55         | 343     | <b>7</b> 7 | 518     |
|            |         |            |         |            |         |

## TRAVERSE 11B

| Sample No. | Co-ords | Sample No.      | Co-ords | Sample No. | Co-ords |
|------------|---------|-----------------|---------|------------|---------|
| G4278/76   | 648     | G4312/76        | 427     | G4346/76   | 208     |
| 79         | 641     | 13              | 419     | 47         | 203     |
| G4280/76   | 634     | 14              | 413     | 48         | 198     |
| 81         | 626     | 15              | 406     | 49         | 194     |
| 82         | 618     | 16 <sup>-</sup> | 398     | G4350/76   | 187     |
| 83         | 612     | 17              | 391     | 51         | 181     |
| 84         | 604     | 18              | 385     | 52         | 175     |
| 85         | 597     | 19              | 377     | 53         | 169     |
| 86         | 589     | G4320/76        | 371     | 54         | 162     |
| 87         | 582     | 21              | 363     | 55         | 156     |
| 88         | 576     | 22              | 356     | 56         | 151     |
| 89         | 568     | 23              | 348     | 5 <b>7</b> | 146     |
| G4290/76   | 562     | 24              | 343     | 58         | 140     |
| 91         | 555     | 25              | 336     | 59         | 135     |
| 92         | 547     | 26              | 328     | G4360/76   | 131     |
| 93         | 541     | 27              | 321     | 61         | 126     |
| 94         | 533     | 28              | 314     | 62         | 119     |
| 95         | 526     | 29              | 306     | 63         | 112     |
| 96         | 520     | G4330/76        | 298     | 64         | 105     |
| 97         | 515     | 31              | 289     | 65         | 97      |
| 98         | 510     | 32              | 281     | 66         | 91      |
| 99         | 505     | 33              | 273     | 67         | 83      |
| G4300/76   | 500     | 34              | 267     | 68         | 76      |
| . 1        | 495     | 35              | 262     | 69         | 69      |
| 2          | 488     | 36              | 257     | G4370/76   | 62      |
| 3          | 481     | 37              | 253     | 71         | 55      |
| 4          | 475     | 38              | 248     | 72         | 48      |
| 5          | 471     | 39              | 244     | 73         | 40      |
| 6          | 466     | G4340/76        | 238     | 74         | 32      |
| 7          | 461     | 41              | 233     | 75         | 26      |
| 8          | 456     | 42              | 228     | 76         | 21      |
| 9          | 448     | 43              | 223     | 77         | 15      |
| G4310/76   | 441     | 44              | 218     | 78         | 8       |
| 11         | 433     | 45              | 213     | 79         | 0       |

TRAVERSE 12B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G4380/76   | 280     | G4407/76   | 45      | G4434/76   | 375     |
| 81         | 275     | 8          | 40      | 35         | 380     |
| 82         | 270     | 9          | 35      | 36         | 385     |
| 83         | 265     | G4410/76   | 30      | 37         | 390     |
| 84         | 260     | 11         | 25      | 38         | 395     |
| 85         | 255     | 12         | 20      | 39         | 400     |
| 86         | 250     | 13         | 15      | G4440/76   | 413     |
| 87         | 245     | 14         | 10      | 41         | 425     |
| 88         | 240     | 15         | 5       | 42         | 438     |
| 89         | 235     | 16         | 0       | 43         | 452     |
| G4390/76   | 230     | 17         | 290     | 44         | 464     |
| 91         | 225     | 18         | 295     | 45         | 477     |
| 92         | 220     | 19         | 300     | 46         | 490     |
| 93         | 215     | G4420/76   | 305     | 47         | 505     |
| 94         | 210     | 21         | 310     | 48         | 520     |
| 95         | 205     | 22         | 315     | 49         | 535     |
| 96         | 255     | 23         | 320     | G4450/76   | 550     |
| 97         | 260     | 24         | 325     |            |         |
| 98         | 90      | 25         | 330     |            |         |
| 99         | 85      | 26         | 335     |            |         |
| G4400/76   | 80      | 27         | 340     |            |         |
| 1          | 75      | 28         | 345     |            |         |
| 2          | 70      | 29         | 350     |            |         |
| 3          | 65      | G4430/76   | 355     |            |         |
| 4          | 60      | 31         | 360     |            |         |
| 5          | 55      | 32         | 365     |            |         |
| 6          | 50      | 33         | 370     |            |         |
|            |         |            |         |            |         |

TRAVERSE 13B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G4451/76   | 10      | G4471/76   | 210     | G4491/76   | 420     |
| 52         | 20      | 72         | 220     | 92         | 410     |
| 53         | 30      | 73         | 600     | 93         | 400     |
| 54         | 40      | 74         | 590     | 94         | 390     |
| 55         | 50      | 75         | 580     | 95         | 380     |
| 56         | 60      | 76         | 570     | 96         | 370     |
| 57         | 70      | 77         | 560     | 97         | 360     |
| 58         | 80      | 78         | 550     | 98         | 350     |
| 59         | 90      | 79         | 540     | 99         | 340     |
| G4460/76   | 100     | G4480/76   | 530     | G4500/76   | 330     |
| 61         | 110     | 81         | 520     | 1          | 320     |
| 62         | 120     | 82         | 510     | 2          | 310     |
| 63         | 130     | 83         | 500     | 3          | 300     |
| 64         | 140     | 84         | 490     | 4          | 290     |
| 65         | 150     | 85         | 480     | 5          | 280     |
| 66         | 160     | 86         | 470     | · 6        | 270     |
| 67         | 170     | 87         | 460     | 7          | 260     |
| 68         | 180     | 88         | 450     | 8          | 250     |
| 69         | 190     | 89         | 440     | 9          | 240     |
| G4470/76   | 200     | G4490/76   | 530     | G4510/76   | 230     |
|            |         |            |         |            |         |

### TRAVERSE 14B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G4511/76   | 710     | G4539/76   | 349     | G4567/76   | 160     |
| 12         | 698     | G4540/76   | 337     | 68         | 153     |
| 13         | 685     | 41         | 324     | 69         | 146     |
| 14         | 672     | 42         | 311     | G4570/76   | 138     |
| 15         | 659     | 43         | 298     | 71         | 129     |
| 16         | 646     | 44         | 285     | 72         | 121     |
| 17         | 633     | 45         | 272     | 73         | 112     |
| 18         | 620     | 46         | 259     | 74         | 105     |
| 19         | 607     | 47         | 247     | 75         | 95      |
| G4520/76   | 595     | 48         | 233     | 76         | 87      |
| 21         | 581     | 49         | 220     | 77         | 77      |
| 22         | 568     | G4550/76   | 208     | 78         | 69      |
| 23         | 555     | 51         | 206     | 79         | 62      |
| 24         | 543     | 52         | 204     | G4580/76   | 55      |
| 25         | 5 3 0   | 53         | 202     | 81         | 48      |
| 26         | 518     | 54         | 200     | 82         | 42      |
| 27         | 505     | 55         | 198     | 83         | 37      |
| 28         | 492     | 56         | 195     | 84         | 32      |
| 29         | 478     | 57         | 194     | 85         | 28      |
| G4530/76   | 465     | 58         | 194     | 86         | 24      |
| 31         | 453     | 59         | 194     | 87         | 20      |
| 32         | 440     | G4560/76   | 194     | 88         | 17      |
| 33         | 426     | 61         | 194     | 89         | 13      |
| 34         | 414     | 62         | 194     | G4590/76   | 10      |
| 35         | 402     | 63         | 187     | 91         | 5       |
| 36         | 388     | 64         | 180     | 92         | 0       |
| 37         | 375     | 65         | 174     |            |         |
| 38         | 362     | 66         | 166     |            |         |

## TRAVERSE 15B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No. | Co-ords |
|------------|---------|------------|---------|------------|---------|
| G4593/76   | 0       | G4620/76   | 219     | G4647/76   | 435     |
| 94         | 6       | 21         | 226     | 48         | 442     |
| 95         | 13      | 22         | 233     | 49         | 450     |
| 96         | 18      | 23         | 241     | G4650/76   | 460     |
| 97         | 25      | 24         | 249     | 51         | 467     |
| 98         | 34      | 25         | 257     | 52         | 476     |
| 99         | 42      | 26         | 265     | 53         | 483     |
| G4600/76   | 49      | 27         | 272     | 54         | 492     |
| 1          | 56      | 28         | 280     | 55         | 500     |
| 2          | 65      | 39         | 288     | 56         | 508     |
| 3          | 73      | G4630/76   | 296     | 57         | 517     |
| 4          | 81      | 31         | 305     | 58         | 524     |
| 5          | 89      | , 32       | 314     | 59         | 533     |
| 6          | 97      | 33         | 322     | G4660/76   | 541     |
| 7          | 105     | 34         | 330     | 61         | 550     |
| 8          | 115     | 35         | 339     | 62         | 556     |
| 9          | 123     | 36         | 347     | 63         | 560     |
| G4610/76   | 132     | 37         | 356     | 64         | 574     |
| 11         | 141     | 38         | 364     | 65         | 583     |
| 12         | 151     | 39         | 372     | 66         | 591     |
| 13         | 161     | G4640/76   | 379     | 67         | 600     |
| 14         | 171     | 41         | 387     | 68         | 609     |
| 15         | 180     | 42         | 394     | 69         | 617     |
| 16         | 188     | 43         | 402     | G4670/76   | 626     |
| 17         | 196     | . 44       | 410     | 71         | 635     |
| 18         | 205     | 45         | 418     | 72         | 642     |
| 19         | 212     | 46         | 426     |            |         |

## TRAVERSE 16B

| Sample No. | Co-ords | Sample No. | Co-ords | Sample No.  | Co-ords |
|------------|---------|------------|---------|-------------|---------|
| G4673/76   | 778     | G4701/76   | 507     | G4729/76    | 250     |
| 74         | 768     | 2          | 497     | G4730/76    | 240     |
| 75         | 758     | 3          | 487     | 31          | 230     |
| 76         | 748     | 4          | 477     | 32          | 220     |
| 77         | 738     | 5          | 467     | 33          | 210     |
| 78         | 728     | 6          | 457     | 34          | 200     |
| 79         | 718     | 7          | 447     | 35          | 190     |
| G4680/76   | 708     | 8          | 437     | 36          | 180     |
| 81         | 698     | 9          | 427     | 37          | 170     |
| 82         | 688     | G4710/76   | 418     | 38          | 160     |
| 83         | 678     | 11         | 409     | <b>39</b> . | 150     |
| 84         | 668     | 12         | 402     | G4740/76    | 140     |
| 85         | 658     | 13         | 395     | 41          | . 130   |
| 86         | 648     | 14         | 389     | 42          | 120     |
| 87         | 638     | 15         | 382     | 43          | 110     |
| 88         | 728     | 16         | 375     | 44          | 100     |
| 89         | 618     | 17         | 367     | 45          | 90      |
| G4690/76   | 609     | 18         | 358     | 46          | 80      |
| 91         | 601     | 19         | 350     | 47          | 70      |
| 92         | . 593   | G4720/76   | 340     | 48          | 60      |
| 93         | 584     | 21         | 330     | 49          | 50      |
| 94         | 576     | 22         | 320     | G4750/76    | 40      |
| 95         | 567     | 23         | 310     | 51          | 30      |
| 96         | 557     | 24         | 330     | 52          | 20      |
| 97         | 547     | 25         | 290     | 53          | 10      |
| 98         | 537     | 26         | 280     | 54          | 0       |
| 99         | 527     | 27         | 270     |             |         |
| G4700/76   | 517     | 28         | 260     |             |         |