HYDROGEOCUSY SECTION

THE HYDROGEOLOGY OF THE MOUNT GAMBIER AREA, SOUTH-EASTERN SOUTH AUSTRALIA

J.D. WATERHOUSE

Department of Mines
South Australia —

DEPARTMENT OF MINES SOUTH AUSTRALIA

GEOLOGICAL SURVEY ENGINEERING DIVISION

THE HYDROGEOLOGY OF THE MOUNT GAMBIER AREA,
SOUTH-EASTERN SOUTH AUSTRALIA

þν

J.D. WATERHOUSE GEOLOGIST

Rept.Bk.No.75/82 G.S. No. 5615 Hyd. No. 2680 DM. No. 297/72

-		
	CONTENTS	PAGE
	SUMMARY	1
1.	INTRODUCTION	1
2.	DESCRIPTION OF AREA	2 3 4
3.	GEOLOGY	4
	A. GENERAL	4
	B. KNIGHT GROUP	.6
	C. KONGORONG SAND, LACEPEDE FORMATION D. GAMBIER LIMESTONE	* 6 6
	E. BRIDGEWATER FORMATION	9
	F. VOLCANICS	9
4:	HYDROGEOLOGY	10
	A. GENERAL	10
	B. CLIMATE AND SURFACE HYDROLOGY	10
	C. CONFINED AQUIFERS D. UNCONFINED AQUIFERS	11 13
	D. UNCONFINED AQUIFERS (i) General	13
	(ii) Water Table Configuration	13
5.	WATER BALANCE	16
	A. INFLOW	17
	(i) Soil Infiltration Component	17
	(ii) Recharge from City Area Runoff (iii) Point Recharge Component	18 18
	(iv) Leakage from Confined Aquifer	19
	(v) Discussion of Inflow Estimate	19
	B. OUTFLOW	19
	(i) Natural Discharge	20
	(ii) Municipal, Industrial and Private Water Supplies (iii) Agricultural Use	20 21
	(iv) Pine Forests	21
	(v) Discussion of outflow estimate	21
	C. AQUIFER PARAMETERS	21
_	D. WATER BALANCE	24
6.	HYDROCHEMISTRY OF UNCONFINED AQUIFERS A. GENERAL	26 26
	B. IONIC BALANCE	27
	(i) Cyclic Salt Contribution	27
	(ii) Mass Balance	28
-	C. CONCLUSIONS	29 ⁻
7.	GROUNDWATER CONTAMINATION A. GENERAL	29 29
	B. INDICATORS OF CONTAMINATION	30
	(i) Nitrate	30
	(ii) Bacteria	32
	(iii) Phosphate	33
	(iv) Phenols (v) Metals	33 33
	(vi) Dissolved Oxygen (D.O.)	34
	(vii) Chemical Oxygen Demand (COD)	34
8.	DISCUSSION AND INTERPRETATION OF RESULTS OF POLLUTION SAMPLING	34
	A. NITRATE	34
	(i) Sampling Methods(ii) Nitrates in Stratigraphic Bores	35 36
	(iii) Statistical Treatment of Data	36
	(iv) Change in Ionic Constituents with Increased Nitrate	39
	(v) Blue Lake Nitrates	39

PAGE

CONTENTS

APPENDIX K

9. 10.	F. G. RECC A. B. ACKN	SPECIAL ANA (i) Pheno (ii) Coppo BACTERIOLOO CONFINED AG	PROPOSALS	40 42 44 44 45 46 47 47 48 49
			APPENDICES	· <u>-</u>
APPE	ENDIX	(A	Discussion of Cable-tool Drill Sampling and Interp	retation.
APPE	NDIX	(B	Summary of Investigations.	
APPE	ENDIX	(C	Water Sampling and Analysis Methods.	•
APPE	NDIX	(D	Glossary of Terms	
APPE	ENDI)	(E	Selected Geological Logs	
APPE	ENDIX	(F	Daily Rainfall Figures, Mt. Gambier Aerodrome	
APPE	ENDIX	(G	Water Analyses	
APPE	ENDIX	(Н	Whole Rock Analyses	
APPE	ENDIX	⟨ - ‡ I -	Sample Mass Balance Determination	
APPE	ENDIX	(J	Special Analyses (Cu, Cr, As, Nitrogen analyses)	

Bacteriological Analyses.

TABLES

	•		
NUMBER	/ TITLE		PAGE
I Stratigraphy.			5
II	II Values of Hydraulic Conductivity - Unconfined Aquifer.		
III	Main Constituents of Sea Water.		
Molar Ratios - $S0_4^{-}/C1^{-}$, $K^{+}/C1^{-}$ and $Na^{+}/C1^{-}$		28	
V	Analyses for Specific Pollutants		
VI Independence Probabilities for Different Sample Groups			37
VII			
VIII	Dissolved Oxygen and Chemical Oxygen Demand.		43
ΙΧ	Stratigraphic Bore Sites (in Appendix B)		(i)
	PLATES	Negat	ivo
Number	<u>Title</u>	Numbe	
1	Mount Schank.	11339	
2	Blue Lake, Mount Gambier (blue phase) showing Gambier Limestone overlain by lava and volcanic ash.	990	
3.	Allen's Quarry, Section 715, Hd. Blanche. Coarse grained quartz sands overlain by leached clays - Knight Group type section.	10631	
4	"Underground Stream" flowing through a joint-controlled cave 200 m long (G14) into the Glenelg River in Victoria.	11504	
5	Urban runoff discharging into Cave Gardens, an ornamental sinkhole in the centre of Mount Gambier.	10626	
6	Karstic Gambier Limestone plain south of Mount Gambier (Barnoolut Area).	10615	
7	Small beach spring discharging from the unconfined aquifer, Section 598, Hd. Caroline.	11337	
8	Eight Mile Creek discharge. 11338		
9	Rubbish dumped in Caroline Sinkhole, 25 km south-east of Mount Gambier.	10629	

FIGURES

Number	<u>Title</u>	<u>Drawing</u>
1	Locality Plan.	74,-497
2	Geological Plan.	\$10898
3	Location of Stratigraphic Bores.	74-941
4	Geological Cross Section	74-356
5	Diagrammatic Cross Section Through Dune	74-22
6	Fence Diagram.	74-357
7	Potential Evapotranspiration from Grassland, and Average Monthly Rainfalls.	75-98
8	Hydrogeological Zones and Water Table Contours May 1972.	74-496
9	Nitrate Concentrations for Different Sampling Methods.	75-101
·10	Plot of Depth of Sampling Below Water Table versus Nitrate Content of Sample.	S10273
41	Stratigraphic Bores - Nitrate Concentrations versus Sampling Depth.	74-417
12	Regional Distribution of Sample Nitrate Concentrations, Locations of Areas A and B.	73-333
13	Histograms of Nitrate Concentrations in Areas A and B.	75-100
14	Normalized Distributions of Sample Nitrate Concentrations.	75-99
15	Piper Diagram - Samples with less than 10 mg/l Nitrate.	73-742
16	Piper Diagram - Hundreds of Blanche and Gambier, Samples with Greater than 50 mg/l Nitrate.	73-241a
17	Piper Diagram - Hundreds of Caroline, MacDonnell, Mingbool and Young. Samples with Greater than 50 mg/l Nitrate.	73-241
18	Nitrate Concentrations in Blue Lake Water.	S:10274
19	Phosphate Content of Sampled Water.	S10276
. 20	Dissolved Oxygen Content of Sampled Water.	73-318
21	Plot of Dissolved Oxygen versus Chemical Oxygen Demand.	S10287

3 Bec

(v)

MAPS

Map No. Title Drawing Number

1 Pollution Survey Areas and Sample Points. 73-436

PLATE 1 MOUNT SCHANK

PLATE 2 BLUE LAKE, MOUNT GAMBIER

(BLUE PHASE), SHOWING GAMBIER LIMESTONE

OVERLAIN BY LAVA AND VOLCANIC ASH

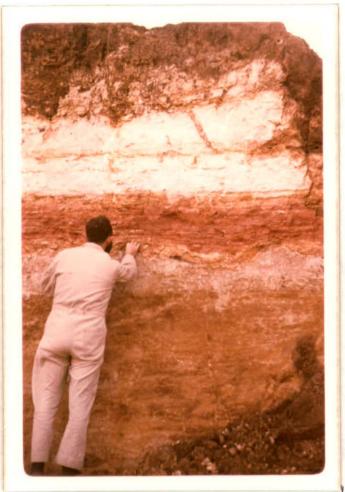


PLATE 3

SAND QUARRY, SECTION 715
HUNDRED OF BLANCHE
COARSE QUARTZ SAND,
OVERLAIN BY LEACHED
CLAYS OF THE KNIGHT
GROUP

PLATE 4 "UNDERGROUND STREAM" IN A JOINT CONTROLLED CAVE, FLOWING INTO THE GLENELG RIVER

PLATE 5

URBAN RUNOFF
DISCHARGING INTO CAVE
GARDENS, AN ORNAMENTAL
SINKHOLE IN THE CENTRE
OF MOUNT GAMBIER

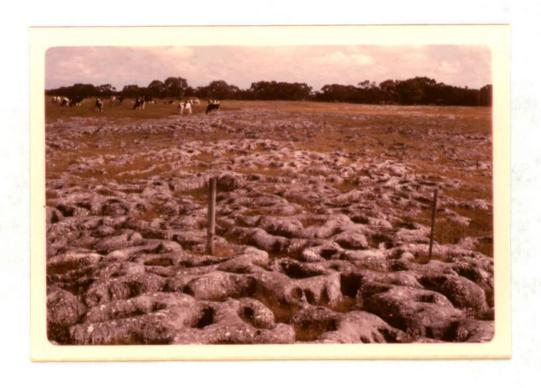


PLATE 6 EXPOSED KARSTIC GAMBIER LIMESTONE
IN THE BARNOOLUT AREA, SOUTH OF MOUNT
GAMBIER

PLATE 7 SMALL BEACH SPRING DISCHARGE SECTION 598, HUNDRED OF CAROLINE



PLATE 8 EIGHT-MILE CREEK DISCHARGE (AVERAGE 2.3 CUMECS)

PLATE 9 RUBBISH DUMPED IN

CAROLINE SINKHOLE, 25 KM

SOUTH EAST OF MOUNT GAMBIER

DEPARTMENT OF MINES SOUTH AUSTRALIA

Rept.Bk.No. 75/82 G.S. No. 5615 Hyd. No. 2680 DM. No. 297/72

THE HYDROGEOLOGY OF THE MOUNT GAMBIER AREA, SOUTH-EASTERN SOUTH AUSTRALIA

ABSTRACT

The Mount Gambier area of south-eastern South Australia is totally dependent upon groundwater for its water supplies. Water of low salinity is extracted from unconfined aquifers (Oligo-Miocene calcarenites) and to a much lesser extent, confined aquifers (Eocene sands). Both systems are likely to contribute to the Blue Lake, which occupies a recent volcanic cratera, and from which the city of Mount Gambier derives its municipal supplies.

A winter precipitation surplus of 300 mm over the potential evapotranspiration allows recharge to the unconfined aquifer through most of the area. The amount varies considerably with soil type and land use, with extremes shown by pine forests (little or no recharge) and karstic pavements (recharge estimated at 100-200 mm). Water balance determinations suggest that current recharge estimates need to be increased by 25% or more to balance the estimated discharge of 6.6 cumecs from the system. The confined aquifer derives much of its recharge to the north of the area studied, but some is expected north of Mount Gambier, where leakage downwards through the confining beds is likely to occur.

Most of the discharge from the unconfined system is controlled by a solution-enlarged fracture system which localizes major spring: discharges at the coast, and has a hydraulic conductivity of $100\text{--}300~\text{m}^3\text{day}^{-1}\text{m}^{-2}$, compared with $10\text{--}30~\text{m}^3\text{day}^{-1}\text{m}^{-2}$ for porous medium flow in unfractured aquifer material.

The hydrochemistry of the unconfined aquifers can be explained in terms of cyclic salt and dissolution of impure limestone.

The cavernous nature of the limestone underlying most of the area has facilitated subsurface waste disposal. In turn a serious pollution problem has developed, particularly in the Mount Gambier city area. The main indicator of pollution is the nitrate ion, derived from the breakdown of organic wastes. Nitrate concentrations range from immeasurably low to 490 mg/l, considerably in excess of the safe limit for infants, and dramatic when compared with natural concentrations of 0-25 mg/l. Localized contamination is a problem in rural areas, with dairies, houses and stockyards all contributing, particularly where they coincide with karst features such as solution enlarged fractures.

Although pollution of the unconfined aquifer is serious at Mount Gambier, there remains a valuable resource elsewhere in the area, and it merits more detailed study. The confined system is also unpolluted, and its development will require careful management to ensure that its present hydraulic relationship with the unconfined aquifers is preserved.

1. INTRODUCTION

The Mount Gambier region (The Gambier Plain) depends upon groundwater supplies for urban, industrial and domestic purposes. In particular Mount Gambier city's supply is taken from Blue Lake, an expression of the water table revealed by a volcanic crater. Water suitable for most purposes is withdrawn from the unconfined, Gambier Limestone aquifer, with a small, but growing contribution from the underlying, confined, Knight Group aquifer system.

The most recent summary of the hydrogeology was made by 0'Driscoll (1960), where the author stated that there was little danger of over-exploitation of the groundwater resource, but that the possibility of its contamination should be regarded seriously.

In recent years the problems associated with development in an area underlain by an aquifer with local, widespread recharge have become very apparent, with numerous examples of individual boreholes yielding obviously polluted water (Ide, 1971). It became essential to investigate the hydrogeology in detail, and assess the pollution hazard, identifying the sources where possible. To this end the Tertiary stratigraphy was investigated, 8 stratigraphic boreholes being drilled with cable tool rigs. Appendix A outlines the method of sampling and the problems of interpretation. The configuration of the water table was determined with a grid of about 250 observation boreholes (Map 1), many of them drilled for that purpose. The observation bore grid was then systematically sampled to obtain reliable data for hydrochemical and pollution studies. Details of the investigations outlined above may be found in Appendix B, with a detailed description of water sampling techniques in Appendix C, and a glossary of terms in Appendix D.

Lack of quantitative data still makes it difficult to determine the safe yield of the aquifers in the area, but the pollution problem can be assessed.

At present the water resources of the area are administered under the Underground Waters Preservation Act, 1973 (Boucaut and Waterhouse, 1973), and control of effluent disposal is possible. Subsurface disposal, one major source.

of pollution, will decrease in importance in future years as resource management policies will require alternative methods of disposal of wastes.

DESCRIPTION OF AREA

The Mount Gambier area comprises 1 400 km² in the extreme south-eastern corner of South Australia (Figure 1). The study area comprised the Hundreds of Blanche, Gambier, Caroline and MacDonnell, and parts of Mingbool and Young. Relief is generally low, and occasionally moderate, with north-westerly trending ridges rising to a maximum of 50 metres above their flanking plains. Mount Gambier and Mount Schank dominate, rising to 190 and 120 metres above sea level respectively. Both are volcanic in origin, Mount Schank being a well-preserved, dry-floored cone (Plate 1). The Mount Gambier complex (Fenner, 1921) contains four lakes, one of which, the well known Blue Lake (Plate 2) is about 80 metres deep, whilst the others are smaller and shallower.

The City of Mount Gambier, with a population approaching 20 000, is the only sizeable town in the area. Local industries are based mainly on extensive pine forests and dairy products.

The region has been cleared of most natural vegetation, and put to conventional farming or forestry. The lower South-East proved difficult to develop in the early days of settlement because of extensive swampy conditions. This problem was overcome (not without the introduction of others) by the construction of a network of artificial drains, as there is no natural well-defined drainage pattern. To the north of the Mount Gambier area Dismal Swamp remains largely undrained to the present day. It is a series of disconnected, shallow, often circular swamps forming a belt extending north-west from the Victorian border. Different geological conditions and a deeper water table prevented swamp formation further south. At the coast the water table is again shallow and swamps occur. These also have been made suitable for agriculture by drainage channels.

The locations of points of interest may be found on Figure 1, and all sample points are labelled on Map 1.

3. GEOLOGY

A. GENERAL

The Mount Gambier area forms part of the Gambier Embayment of the Otway Basin, described in Wopfner and Douglas (1971). Surface geology is shown on Figure 2. The sequence of sediments was deposited intermittently from Jurassic through to Recent times. The Tertiary sediments of the Knight Group and the Gambier Limestone are of particular interest as they form the dominant aquifers. Figure 3 shows the locations of boreholes used for stratigraphic information. Table 1 summarizes ages, lithologies, and aquifer characteristics of the stratigraphic units relevant to the Tertiary - Recent period. The subsurface relationships between the main Tertiary units is illustrated by Figures 4 and 5, north-south cross-sections.

The Gambier Limestone and Knight Group sediments predominate, occurring through most of the area, with much smaller and irregular occurrences of the other units.

The Knight Group sediments are paralic, with a poorly preserved marine fauna (Ludbrook, 1961). An increasing marine influence was felt during the deposition of the Kongorong Sand and the Lacepede Formation, climaxing with a major marine transgression in the Oligocene. The Gambier Limestone was then deposited with minor terrigenous influence. Pleistocene aeolianites of the Bridgewater Formation overlie the older sediments, some in well-defined bands marking old shores lines (Sprigg, 1952). Recent coastal and fluviatile sands cover some of the area (Firman, 1973).

Recent volcanic activity is revealed by Mount Gambier and the smaller cone of Mount Schank to the south.

TABLE I - Stratigraphy (after Parkin, 1969)

AGE	UNIT	LITHOLOGY	AQUIFER CHARACTERISTICS
Quaternary:	Undifferentiated volcanics	Mainly ash showers, with minor basalt lava flows at the base.	Undeveloped, very restricted areal distribution.
Quaternary	Bridgewater Formation	Largely aeolianite with some shelly beds.	Little developed, restricted areal distribution.
Miocene - 0ligocene	Gambier Limestone	Calcilutite - calcarenite, bryozoal and flinty.	Poor to very good, widely developed throughout area. Unconfined and semi-confined.
Late Oligocene(?)	Compton Conglomerate	Ferruginous, rubbly conglomerate - reworked Knight sediments.	Not an aquifer - very limited occurrence.
Upper to Middle Eocene	Kongorong Sand	Poorly sorted ferruginous quartz arenite.	Saline, undeveloped, very restricted occurrence.
Upper to Middle Eocene	Lacepede Formation	Variable. Glauconitic, silty limestone with polished brown ironstone grains grading to brown glauconitic silts.	Forms part of the confining layer between confined and unconfined aquifers.
Eocene	Knight Group sediments	Interbedded black/brown lignitic clays and quartz arenites.	Good aquifer where developed. Widespread, but often at uneconomic depths. Confined in most of the area.

B. KNIGHT GROUP

The Tartwaup Formation (Parkin, 1969), also named Knight Formation (Harris, 1966) is the upper Formation within the Knight Group sediments (Sprigg, 1952). They are a paralic sequence of interbedded sands and carbonaceous clays of Eocene age. Sediments characteristically contain polished, rounded quartz arenite, fine mica flakes and some irregular pyrite grains and rock fragments. By virtue of the ubiquitous black clay and often coarse, rounded quartz grains, the Knight Group is readily distinguished from the overlying Gambier Limestone, and can usually be recognized from even the poorest geological log. The upper portion is often black clay with varying proportions of silt and well rounded quartz arenite, and has been named the Burrungule Member" (Harris, 1966).

The only South Australian exposure (Plate 3) in Allen's Quarry, Section 715, Hundred of Blanche reveals coarse grained, poorly sorted quartz sands (Ludbrook, 1961). The overlying clays are leached and oxidised (grey and red-yellow brown) compared with subsurface occurrences, where they are dark brown to black.

C. KONGORONG SAND, LACEPEDE FORMATION, COMPTON CONGLOMERATE

Two thin formations of Middle and Upper Eocene age have been recognised at the base of the Gambier Limestone (Parkin, 1969).

A dark, glauconitic silt believed to be the Lacepede Formation was recognised in samples from a few bores in the area; it is not discussed in detail.

The Kongorong Sand (a limonitic quartz arenite - rudite) was described from ODNL Mount Salt Structure Hole No. 3 (Parkin, 1969) in the southern part of the area. Quartz arenite resembling the Kongorong Sand was recognised in borehole CAR 11 in the extreme south-east of the area but not in any other bores. This is interpreted as being the result of sedimentation on an undulating surface, with possible subsequent erosion.

D. GAMBIER LIMESTONE

The Gambier Limestone is a transgressive Oligo-Miocene unit (Parkin, 1969), with a considerable diversity of sediment types within the calcarenite-marl framework.

Sediments range from richly fossiliferous calcirudites through calcarenites and calcisiltites to glauconitic marls, some apparently 100% fossil fragments, others apparently unfossiliferous. Black to dark brown flint occurs commonly, and in the hand specimen sometimes grades directly to a grey silicified calcarenite with readily recognisable fossil fragments. Quartz arenite occurs commonly as a minor constituent and rarely as a major constituent, reflecting a terrestrial influence on the predominantly marine sequence.

The limestone is jointed where exposed, with a dominant NW-SE trend (Sprigg, 1952). Cave formation has often been controlled by jointing (Plate 4), and linear caves some hundreds of metres long have been mapped by members of the Cave Exploration Group of South Australia (F. Aslin, S. Aust. Dept. Mines, pers. comm.).

Dolines and cenotes are common, and their concentration near Barnoolut, south-west of Mount Gambier, probably indicates more intense fracturing in that area.

The formation thins considerably from 300 metres at the coast to a few metres in the north of the Mount Gambier area (Figure 4). Logs of existing bores suggest that the limestone is thin and sometimes absent in the Hundred of Young, and it can be seen to be absent in part of Allen's Quarry in the north of the Hundred of Blanche.

Detailed lithological correlations are difficult because of the repetitive nature of the sequence. Irregular flint formation, dolomitization and recrystallization complicate the situation.

Lindsay (1967) recognised three zones within the Gambier Limestone sequence from bores drilled 45 km to the north-west near Millicent, an "Upper grey cherty limestone", a "Cream limestone" and a "Lower grey limestone". Ludbrook, in Wopfner and Douglas (1971), recognised a "thin marl member" at the base of the formation. McGowran (1973) described a three fold succession similar to Lindsay's in a borehole drilled near Robe, 120 km to the north-west of Mount Gambier.

The three-fold sequence can be recognised wholly or in part from boreholes in the Mount Gambier area and is represented on the Fence Diagram (Figure 6) and the Geological Section (Figure 4). It is often difficult to determine a boundary between the "Upper grey cherty" zone and the underlying "Cream" zone because cream, flint—free layers are commonly found within the upper zone. Generally a thickness of some tens of metres of consistent cream limestone could, however, be recognised. The "Lower grey" zone was easily recognised to the south of Mount Gambier, but appears to be absent in many cases to the north. A detailed examination of the stratigraphy is being undertaken by J.M. Lindsay, a micropalaeontologist with the South Aust-ralian Department of Mines.

The sequence is reflected in the soils of the area (Blackburn, 1959), with flinty soils in the area where the "Upper grey cherty" zone outcrops, and a lack of reported flint in soils where the "Cream" zone outcrops.

The main quarries from which building stone is derived, and the type section for the Gambier Limestone (Ludbrook (1961) and Tenison Woods (1860, p. 256 and 1862, p. 75)) also lie in the area of outcrop of the middle zone. This has resulted in the widely accepted, but erroneous view that the Gambier Limestone is essentially a bryozoal calcarenite.

The occurrence of the middle zone at depth in the sequence south of the outcrop area has been substantiated by a local water boring contractor, Mr. Jack Sims, who has used it to provide larger or less polluted supplies than can be obtained from the overlying material.

The upper part of the sequence has sometimes been removed by erosion (the upper zone is often absent), particularly in the northern part of the area. Proximity to the Pleistocene upwarp axis proposed by Sprigg (1952) may be a contributing factor.

Selected geological logs are included in Appendix E.

E. BRIDGEWATER FORMATION

Part of the series of sub-parallel dune ranges for which the south-east of the State is well known rest unconformably on the Gambier Limestone. Well developed ridges occur south of Mount Gambier whilst to the east and north dune complexes are found.

Drilling results revealed the cross-section of a well-developed dune 5 km south of Mount Gambier (Figure 5). The base of the dune was found to rest on the plain of Gambier Limestone exposed on the interdunal flat. The geological section on Figure 4 reveals that the base of some dunes may be several metres above the level of the interdunal flat, giving some measure of the removal of material that has taken place since formation. Detailed field work to investigate the dune bases has not been undertaken.

Bores penetrating the dunes revealed highly variable sequences of yellow/ brown quartzose calcarenites with occasionally shelly fossils, and differing degrees of cementation.

F. VOLCANICS

Mount Gambier is a complex maar (Ollier, 1967), although it has been considered by some (Fenner, 1921 and Williams, 1941) to be a collapse caldera. However, modern interpretation suggests that explosive phreatic activity was responsible for the formation of the craters. Two radiocarbon dates have been determined for the eruption(s), 1410 years B.P. (Blackburn, 1966) and 4 800 years B.P. (Fergusson and Rafter, 1957). Both dates were obtained from good material, and infer two periods of activity. A soil profile has been recognised in the ash (G. Blackburn, C.S.I.R.O. Division of Soils, pers. comm., 1975), providing supporting evidence.

Mount Schank is a well-preserved scoria cone, with a small subsidiary vent on its flank. Although abundant groundwater is available there, as it is at Mount Gambier, a maar did not form, and the cone is dry floored. No carbon date is available, but its youthful appearance suggests that it is of recent origin, and it is reasonable to assign an age similar to Mount Gambier.

4. HYDROGEOLOGY

A. GENERAL

Confined aquifers are found within the Knight Group and essentially unconfined aquifers within the Gambier Limestone and Bridgewater Formations. The Bridgewater Formation is usually above the water table in the Mount Gambier area, but where the base of a dune is below the water table, hydraulic continuity is likely.

Most of the development of groundwater has utilised the relatively shallow Gambier Limestone aquifer, as it is simple and cheap to obtain supplies. The Knight Group aquifer has only been penetrated by a few bores, and only the one supplying the Wattie-Pict Factory at Mount Gambier (Hundred of Blanche, Section 364, Bore 03) is currently withdrawing significant quantities of water from it. It will probably be used more in the future to obtain pollution free supplies.

The Kongorong Sand need not be considered a potentially useful aquifer in the area as it has only been penetrated in relatively deep bores and contained saline water (6 500 mg/l) when sampled at 298 m in borehole CAR 11. The Lacepede Formation (where encountered) forms part of the confining layers between the Gambier Limestone and Knight Group aquifers.

B. CLIMATE AND SURFACE HYDROLOGY

Average annual rainfall for the area ranges from 700 mm to 800 mm for the measuring stations at Cape Northumberland and Mount Gambier P.O. respectively. (Director of Meteorology, 1966). Most rain falls in the winter months, with average monthly totals exceeding 75 mm from May to September, and exceeding 90-100 mm from June to August.

Potential evapotranspiration for grassland has been estimated (Holmes and Colville, 1970) and is shown graphically on Figure 7, together with average monthly rainfall data for the two stations. It can be seen that precipitation exceeds potential evapotranspiration from early April to late September, with a maximum difference of 2.75 mm day^{-1} in June-July. The total rainfall excess for the winter

months is close to 300 mm at both rainfall stations, and is probably fairly uniform (for grassland) throughout the area. The maximum amount available for recharge, considering soil moisture deficit, will therefore be somewhat less than 300 mm.

Despite the excess precipitation in winter, the only significant surface flows in the area are seen in channelled discharges from swamps and the aquifer near the coast, and a loop of the tidal reach of the Glenelg River. The headwaters of the Glenelg River are in the Grampians, a mountain range in western Victoria, and it becomes an effluent stream in its lower reaches. This is evidenced by progressively lower tritium concentrations in a downstream direction (J.W. Holmes, pers. comm.) and the discrete groundwater discharges which can be observed (Plate 4). The base flow of the river has been conservatively estimated at 2.5 cumecs (J.W. Holmes, pers.comm.), with a 1 cumec contribution along the tidal reach to Moleside Creek in Victoria.

A few minor inland flows occur during heavy rain, running down short, blind valleys with swallow-holes at their extremities.

C. CONFINED AQUIFERS

At Mount Gambier thinner overlying sediments and the prospect of obtaining a pollution free supply makes the confined aquifers economically accessible, and
to the north of the area investigated the small supplies obtained from the overlying
unconfined aquifers often makes their development essential.

In the area south of Mount Gambier the confined aquifers have never been penetrated by water well drilling, and the limited data available is that which has accrued from petroleum exploration drilling.

Recharge probably takes place over a large area some tens of kilometres to the north of Mount Gambier, where the confining layers (and in some cases the Gambier Limestone) are thin or absent (Floegel, 1972). Colville and Holmes (1972) discovered a sink in the unconfined aquifer near Nangwarry, 30 km to the north of Mount Gambier, and it is likely that others, as yet undiscovered, also exist. Until that area has been investigated in some detail, it will not be possible to arrive at a quantitative estimate of recharge.

Both salinity and hydrochemistry are similar to the unconfined aquifer, providing supporting evidence for a significant vertical leakage component of recharge. The differences that have been shown to exist are the presence of iron in significant concentrations in the confined aquifer, and the low level of dissolved oxygen. Both these differences are to be expected when the pyrite content and the reducing environment of the sediments are considered.

The top of the Knight Group is 300 m below sea level at the coast, and discharge presumably takes place under the sea, with a component of vertical leakage where the hydraulic conditions are suitable. To the north of Mount Gambier drilling has shown that the potentiometric level in the confined system is several metres below that in the unconfined aquifer, which suggests a net inflow to the confined aquifers. At Mount Gambier the heads have reversed, partly due to the steep gradient exhibited by the unconfined aquifer north of the city (Figure 8). The potentiometric level of the confined aquifer at the Wattie-Pict bore is 7 metres above that in the unconfined aquifers. This has two important implications.

- (1) Pollution of the confined aquifers is not possible at Mount Gambier by direct leakage from the overlying polluted aquifer, unless future withdrawals from the confined aquifers reverse the head difference.
- (2) It is likely that a proportion of the water in the Blue Lake is derived from the confined aquifer. The bottom of the lake is within a few tens of metres of the inferred top of the Knight Group, and an effective seal in the recently formed volcanic conduit is unlikely. However, this has not been proved by interpretation of the known chemistry of the waters because the two aquifers are not sufficiently different. Tritium, ¹⁴C and stable isotope analyses could be utilized to quantify the situation. Substantial withdrawals from the confined aquifers could prevent upward movement of water, and allow an influx of polluted water to the lake from the unconfined system.

The hydraulic relationship between the aquifer systems south of Mount Gambier is not known, however it is expected that upward leakage will occur.

Aquifer parameters have been determined for the uppermost sand aquifer at Mount Gambier (Valentine and Waterhouse, 1974). During the aquifer tests a marked hydrogeological boundary was encountered, reducing the transmissivity from $1\ 600\ m^3 day^{-1}m^{-1}$ near the borehole to $180\ m^3 day^{-1}m^{-1}$ at some distance from it. The storage coefficient was calculated to be 10^{-4} . The sedimentary environment in which the aquifer material was deposited is likely to have resulted in marked lateral facies changes, and wide variations in hydraulic properties will be common.

The low value of storage coefficient is characteristic of confined aquifers, and will result in much greater drawdown effects than would occur in the Gambier Limestone when exploitation takes place.

D. UNCONFINED AQUIFERS

(i) GENERAL

Groundwater with a salinity often less than 500 mg/l is found throughout the area at depths ranging from 2 to 30 metres below the ground surface. The upper two zones of the Gambier Limestone appear from sparse data to form two separate subaquifers, with slight hydraulic separation.

Due to the irregular incidence of solution features and the inhomogeneity of the sediments, individual bore yields vary considerably from 0.5 litres/sec and (1/sec) or less, to 50 l/sec. One bore in the Dismal Swamp area is reputed to yield 200 l/sec.

Despite widespread development there have been few determinations of aquifer parameters. The available aquifer data are summarized in Table II.

(ii) WATER TABLE CONFIGURATION

The observation bore network was established in 1971 and 1972. Water level measurements provided the basis for the water table contours shown on Figure 8.

The hydraulic gradients are moderate to low generally, due to low relief and the high transmissivity of the Gambier Limestone. They suggest that movement of the groundwater is in a southerly direction throughout the area.

There is a groundwater divide at the north of the Dismal Swamp in the hundreds of Mingbool and Young (S. Aust. Dept. Mines unpublished data of Cobb, 1972). To the north of the divide groundwater flow is in a northerly direction; to the south flow is in a southerly direction. Therefore most groundwater moving through the area studied must be derived from within the area, with a small component moving south-west from Victoria.

The area seems to divide itself naturally into hydrogeological zones exhibiting particular characteristics (see Figure 8).

Steep Gradient Zone: The most obvious feature of the contour plan is the abrupt steepening of gradient north and west of Mount Gambier in the Hundreds of Blanche and Gambier. Local gradients are as steep as 1 in 40, compared with 1 in 1 300 between Mount Gambier and the coast. Several observation bores were drilled in the area northwest of Mount Gambier to investigate this feature, and as can be seen on the fence diagram (Figure 6) and the cross section (Figure 4) there is a marked thinning of the Gambier Limestone in the area of the steep gradient north-west of the city. Examination of bore logs and results obtained from test pumping of observation bores suggest that there may be lower permeabilities in the area of steepest gradient, but thinning of the aquifer probably is more significant in leading to lower transmissivity. The steepening of the hydraulic gradient can be seen in areas both with and without pine forest development and can therefore be regarded as largely independent of land use.

Recharge is reasonably constant as a first approximation and the aquifer therefore must transmit greater amounts of water further to the south, inconsistent with the observed steeper gradient to the north. (Darcy's Law requires that a steeper gradient must occur where the transmissivity of the aquifer is lesser, if a constant volume of water is transmitted.)

Isolated Zones of Steep Gradient - "Dune Highs": A pronounced ridge in the water table contours occurs about 10 km south-east of Mt. Gambier. The feature corresponds with the position of a large Pleistocene dune, and borehole BLA 22 (see Map 1) was drilled through the dune to investigate the possibility of a perched water table. It revealed that the base of that dune corresponds well with the levels of the interdunal flat (Figure 5), and showed that the high water level under the dune is probably related to topography.

Other similar, irregular water table highs probably exist, but their recognition depends upon precise observation bore locations as the water levels drop to "normal" close to the flanks of the dune. The slight dome near the western end of the Steep Gradient Zone is probably related to a similar topographic feature. Ewens Ponds - Mount Schank Trough: A well developed trough extends in a NNW direction from Ewens Ponds, through Mount Schank to the edge of the Steep Gradient Zone about 5 km west of Mount Gambier. It is aligned with the main direction of regional jointing (Sprigg, 1952), and corresponds approximately with the occurrence of the greatest local density of large solution features (Edwards, 1973), particularly those occurring on the property Barnoolut. Mount Schank lies near the centre of the trough, probably controlled by the same fracture system, and the largest individual spring discharge (Eight Mile Creek) is found in the centre of the trough at the coast.

These factors all suggest that the trough represents a zone of increased fracture solution cavity permeability, and by inference it is a preferred flow path for groundwater.

Mount Gambier Plain: A zone approximately 5 km by 15 km centred on Mount Gambier exhibits an extremely low gradient. Many water levels measured in the area differ by less than 0.1 m. The zone is aligned with its long axis orientated in a NW-SE direction - similar to the regional jointing in that area (Sprigg, 1952).

The northern and western boundaries are formed by the Steep Gradient Zone, whilst gentle gradients characterise those to the south and east, with the exception of the local "Dune High".

Despite large annual withdrawals from the Blue Lake (at the centre of the zone) there is little evidence for a surrounding cone of depression. To the northeast of the Lake a slight trough is apparent in the extention towards the lake from the Steep Gradient Zone. The trough is small and affects only one contour line however, and further interpretation is not possible without more observation points.

The zone is interpreted as one of high fracture permeability, partially due to solution enlargement of those fractures localizing the volcanic activity, and is probably the northern extension of the Ewens Ponds - Mount Schank Trough.

Dismal Swamp Area: Swampy conditions prevail to the north of the Steep Gradient

Zone, with near-surface groundwater. Recharge to the Knight Group aquifers has long been postulated for this area, but recent drilling in the Hundred of Mingbool has revealed a thick Gambier Limestone sequence with confining beds at the base.

Significant recharge to the confined aquifers is unlikely in the east of the Dismal Swamp Area, therefore, but may occur in the west, where bore logs suggest that the Knight Group is close to the surface.

Hydraulic gradients are low in the area, and a detailed study of its hydrogeology and hydrology has yet to be made.

5. WATER BALANCE

There is not sufficient data available to determine the detailed water balance, but reasonable approximations can be made to give a preliminary interpretation.

It must be assumed that there is no major change in storage taking place, and at present there is no evidence to suggest otherwise, except at the Blue Lake and at Eight Mile Creek. The Swamps at Eight Mile Creek and adjacent areas were drained after World War II to allow agriculture to be practised, and that hydrologic system has probably reached its new equilibrium. The only long term water level

measurements that have been made are those of the Blue Lake, which has been correlated with the mass rainfall curve (Ward, 1941) and local land-use (Anonymous, 1972). On this basis there has been a decrease in storage in recent years in the Mount Gambier Plain, but as there are no comparable water level measurements elsewhere in that area there is no way of reliably estimating its magnitude.

The balance can therefore be expressed in the form "INFLOW = OUTFLOW", and the various components are discussed below:

A. INFLOW

Most recharge occurs by direct infiltration through the soil, and varies considerably with soil types and land use. Several recent determinations have been made using lysimeters or environmental tritium (Holmes and Colville, 1970a and b; Colville and Holmes, 1972; Allison and Holmes, 1973, and Allison and Hughes, 1972) with varying, though relatively consistent results.

In summary, recharge in pine forests (20% of the area studied) is considerably less than in grassland areas, although the estimates of the magnitude of this difference vary. Recharge estimates for grassland range from 40 mm to 140 mm per annum, as a function of soil type and depth to the water table.

Some of the interdune flats have extensive exposures of limestone. No estimates of recharge have been made in these areas.

In addition to percolation through porous soil and rock there is a component of point recharge via solution features and drainage bores. This component is hard to estimate, but is probably insignificant when compared with the volumes of conventional percolation. Vertical leakage from the underlying confined aquifer is also expected where the head difference is appropriate.

(i) Soil Infiltration Component (A)

The rate of recharge can be obtained from the estimate of 120 mm/year and 60 mm/year for two parts of the area, made by Allison and Holmes (1973). The 120 mm estimate applies to the area from the coast to about 20 km inland, and the 60 mm estimate to the remaining area south of the groundwater divide.

The volume of infiltrating rainwater recharging the aquifer can thus be calculated to be 3.83 cumecs. This compares well with the figure of 3.76 cumecs which can be calculated from the overall estimate of 85 mm/year recharge in subregion 2 of Holmes and Colville (1970a).

A value of 4 cumecs is taken as a recharge estimate for this component.

(ii) Increased Recharge from City Area Runoff (B)

Recharge in the Mount Gambier city area has been enhanced by paved areas and house roofs étc. (although—this water is probably contaminated to some extent) as all city runoff is drained down sinkholes and several hundred boreholes (Plate 5).

This component can be estimated using a figure of 36% hard surface area contributing to runoff from an urban area, and reducing daily rainfalls by about 1 mm to allow for evaporation (D. Kingston, Hydrologist, S.A. Engineering and Water Supply Dept. pers. comm.).

The paved city area can only be measured to about 20% accuracy, as irregular growth has made the urban boundary somewhat diffuse, and a figure of 10 ${\rm km}^2$ has been adopted.

Appendix F gives average daily rainfalls for Mount Gambier Aerodrome (data from the Commonwealth Bureau of Metereology). The calculated annual rainfall with 1 mm subtracted for each rain day is 409 mm.

The annual volume available for recharge is 36% of 10 x 10^6 x 0.409 m³, with an additional 85 mm for 64% of 10 km², that is 2.0 m³ yr⁻¹ (0.064 cumecs). The amount of recharge in a comparable area of grassland (85 mm year⁻¹) would be 8.5 x 10^5 m³ year⁻¹ (0.027 cumecs). The paved city areas have therefore increased intake by 0.04 cumecs, which is not a significant contribution to the total.

(iii) Point Recharge Component (C)

The component of recharge from runoff into solution features is virtually impossible to quantify, and overlaps both components discussed above. It is unlikely to contribute significantly to the total inflow.

(iv) Leakage From Confined Aquifer (D)

At Mount Gambier the potentiometric level of the confined aquifer is 7 metres above that in the unconfined aquifers. To the north the head difference reverses, unconfined water levels being 3 metres higher than those in the confined aquifer at borehole BLA 66, near Allen's Quarry. Borehole data shows that the confining beds vary in thickness and composition. It is impossible to estimate the leakage from the confined aquifer at this stage, but it is possible that it takes place throughout the area south of Mount Gambier.

Upward leakage through the bed of the Blue Lake may be very important locally.

(v) Discussion of inflow estimate

Inhomogeneities of land use and geology make the estimate of 4 cumecs inexact, although the effects sometimes tend to cancel each other. The combined error from these causes is unlikely to exceed 30% of the estimate. The principal sources of error are listed below.

- (1) Pine forests cover about 20% of the area, and are known (Holmes and Colville, 1970b) to markedly decrease recharge.
- (2) There are large interdunal areas south of Mount Gambier with exposed Gambier Limestone pavements (see Figure 2, and Plate 6). No recharge determinations have been made in these areas, but it is considered that it could exceed 100-150 mm, <u>increasing</u> overall recharge significantly.
- (3) Infiltration in parts of the Hundreds of Mingbool, Young and Blanche (for example at Allen's Quarry where the Gambier Limestone is in the unsaturated zone) recharges the Knight Group aquifer, decreasing recharge to the unconfined aquifer by a small amount.

B. OUTFLOW

The loss of water from the system falls into two distinct categories, natural discharge and withdrawals, of which the former is by far the larger.

(i) Natural Discharge

A number of readily measured springs and drainage channels, (Plates 7 and 8), discharge to the sea between Cape Northumberland and the mouth of the Glenelg River. These clearly are a major natural outflow from the aquifer, (E), and have a combined discharge of 5.2 cumecs (Clisby, 1972).

The remaining natural discharge from the system has not been directly measured, and is difficult to estimate, comprising evapotranspiration (F) in areas of shallow groundwater (Dismal Swamp and coastal areas) and porous medium flow into the sea, (G) at and beyond the coast, and leakage through the confining beds into the confined aquifer north of Mount Gambier (H).

A major proportion of the base flow of the Glenelg River is unlikely to be derived from the study area, because the streamlines, deduced from the water table contour plan, suggest a groundwater divide to the east of the Ewens Ponds - Mount Schank Trough. Only some infiltration in the south east of the Hundred of Caroline flows to the Glenelg River.

(ii) Municipal, Industrial and Private Water Supplies (I)

Water was abstracted from the Blue Lake (and therefore possibly from both aquifer systems) at a rate of 0.14 cumecs in 1972, (D. Ide, Regional Engineer, E. & W.S. Dept., Mt. Gambier). Until early 1971 five boreholes provided part of this supply from the unconfined aquifer but these were withdrawn from service when pollution loadings reached the limit of safety (Ide, 1971). A large proportion of Mount Gambier has now been connected to a sewerage system, but prior to 1963 all wastes drained underground, and water was probably lost from the system only by increased evapotranspiration in gardens and vegetable plots. When the sewerage system is completed a significant proportion of the Blue Lake withdrawals will be discharged into the sea.

Industries and private individuals extract groundwater, and although it is also lost via the sewerage system and evapotranspiration, the total volume involved is relatively small. Total sewerage discharge averages about 0.05 cumecs, of which a little more than half can be attributed to industrial use (P.D. Harvey,

Chemist, E. & W.S. Dept. Mt. Gambier, pers. comm., 1975).

(iii) Agricultural Use (J)

Farmers use water mainly for stock and crop watering. As borehole data are incomplete, and use of irrigation bores varies considerably from year to year (depending on the prevailing agricultural conditions, both climatic and economic) no estimate of the amount being withdrawn can be made. Less than 10% of the total area is being irrigated, which is well within the 25% limit suggested by Holmes and Colville (1970a). Evaporative loss of irrigation water will thus be a small proportion of the total outflow from the system.

(iv) Pine Forests (K)

The forests are an extreme example of land use affecting the water budget by reducing recharge. They intercept and transpire large volumes, but probably do not represent a net water loss (J.W. Holmes, pers. comm.).

(v) Discussion of outflow estimate

The discharges E and much of I have been measured. E is known to be reasonably constant, but I will increase with time, and may become less representative of unconfined aquifer discharges if more use is made of the confined aquifer (The Wattie-Pict factory discharges accounted for about half the <u>total</u> sewerage system capacity in 1972).

The error of spring discharge determination is $\frac{1}{2}$ 7½% (Clisby, 1972), that is $\frac{1}{2}$ 0.39 cumecs. The total discharge is therefore probably best estimated to 1 significant figure at this stage, i.e. 5 cumecs, and the minor components lose most of their significance in the discussion.

C. AQUIFER PARAMETERS

The measured spring discharge allows the calculation of a Transmissivity

(T) for the aquifer, representing the value appropriate for the transmission through the aquifer of 5 cumecs to the coast for discharge to the sea.

Darcy's Law can be stated Q = T i L, where

Q = Discharge (5.2 cumecs)

T = Transmissivity (Hydraulic Conductivity x Aquifer Thickness)

i = Hydraulic Gradient (From Mt. Gambier to the coast $\frac{15.5}{21X10}$ 3)

L = Length of Aquifer Discharging (27 km from Cape Northumberland to the Victorian Border)

$$T = \frac{0}{10} + \frac{5.2 \times 86400 \times 21 \times 10^{3}}{27 \times 10^{3} \times 15.5} \text{ m}^{3} \text{ day}^{-1} \text{ m}^{-1}$$

= $22.5 \times 10^3 \text{ m}^3 \text{ day}^{-1} \text{ m}^{-1}$, best stated as $2 \times 10^4 \text{ m}^3 \text{ day}^{-1} \text{ m}^{-1}$

This large value of transmissivity corresponds to a hydraulic conductivity of $100~\text{m}^3~\text{day}^{-1}~\text{m}^{-2}$ for a thickness of aquifer estimated to be, on average, 200 m.

Most of the discharge occurs across a much narrower strip (10 km) of coast near Eight Mile Creek, and flowlines can be seen to converge upon the Piccaninnie Ponds and Eight Mile Creek areas. Local hydraulic conductivities must therefore be greater than the value calculated. If the length of coast across which most discharge takes place is taken to be 10 km, a value of 270 m 3 day $^{-1}$ m $^{-2}$ is appropriate.

Aquifer parameters that have been determined in or near the area are listed in Table II, and it can be seen that there is a marked variation between values.

In summary the overall aquifer hydraulic conductivity is of the order 10 to 30 m 3 day $^{-1}$ m $^{-2}$, with a value of at least 100 m 3 day $^{-1}$ day $^{-2}$ applicable in zones where fracture/solution cavity permeability dominates.

Templer (1972) found that intergranular permeability of Gambier Limestone was highest in the NW-SE direction. This probably reflects ordered deposition of the sediments in the structurally controlled basin.

The specific yield of the bryozoal calcarenite facies of the aquifer material is of the order of 0.4 (Templer, 1972) with a lower value, of the order 0.1 - 0.2 (Bowering, 1973), probably applicable for the bulk aquifer.

TABLE II - AQUIFER PARAMETERS - GAMBIER LIMESTONE

			* * * * * * * * * * * * * * * * * * * *	
HYDRAULIC CONDUCTIVITY (m ³ day- ¹ m- ²)	SPECIFIC YIELD	LOCATION OF TEST, SAMPLE, OR DETERMINATION	COMMENTS	REFERENCE
7	-	Mt. Gambier Aerodrome	Bore test (8 hours) (no observation points)	Read and Waterhouse, 1974
8-12	0.09	Snuggery, 45 km NE of Mt. Gambier	Aquifer Test (72 hours)	Bowering, 1973
30	-	Nangwarry, 40 km N of Mount Gambier	Several pumping tests. Value adopted by Allison and Holmes, 1973	Bleys and Warner, 1963
60	-	"Gambier Plain"	Figure adopted from Bleys and Warner for their area study	Allison and Holmes, 1973 2
1·10 270	-	Bulk aquifer along (1) Coastal section (2) Ewens Ponds Trough	Calculated by Darcy's Law	Herein
150	-	Borehole test at Wattie-Pict	Limestone known to be cavernous	Harris, 1970
-	0.4	Compton Quarry	Laboratory measurement (Typical building stone-bryozoal calcarenite)	Templer, 1972
13.0 19.0 10.4	- ·		Vertical permeability NW-SE direction SW-NE direction	
-	0.054	Hd. Mingbool	Neutron moisture meter, reworked Gambier Lime-stone and base of soil profile.	Colville and Holmes, 1972

D. WATER BALANCE

The equation INFLOW = OUTFLOW can now be written in the form:

Soil Infiltration Component, A
City Area Runoff, B
Point Recharge Component.
Leakage from Confined Aquifer, D

Spring Discharges, E

Evapotranspiration, F

Porous Medium Flow, G

Leakage into Confined Aquifer, H

Municipal etc. Supplies, I

Agricultural Use, J

Pine Forests, K

A + B + C + D = E + F + G + H + I + J + K.....(1) With numerical values for (A + B) and E, equation (1) becomes:

$$4 + C + D = 5.2 + F + G + H + I + J + K \dots (2)$$

This shows that the recharge estimate is inadequate, by at least 25%, depending upon the magnitude of G, providing that the assumption of a steady state is correct.

Using the known hydraulic gradient from Mount Gambier to the coast, it is possible to calculate minimum and maximum values for the porous medium discharge, using appropriate values of hydraulic conductivity from Table II. Darcy's Law can be stated Q = TiL, where

Q = Discharge

i = Hydraulic Gradient,
$$\frac{15.5}{21 \times 10^3}$$

L = Length of Discharge Strip, 27×10^3 m

$$T_{max} = 30 \times 200 \text{ m}^3 \text{ day}^{-1} \text{m}^{-1}$$

$$T_{min} = 10 \times 200 \text{ m}^3 \text{ day}^{-1} \text{m}^{-1}$$

On this basis the maximum expected porous medium flow is 1.4 cumecs, 27% of the gauged surface discharge, and the minimum expected is 0.5 cumecs, 9% of the gauged discharge.

The maximum total discharge to the sea can therefore be estimated at 5.2 + 1.4 = 6.6 cumecs, which requires an average recharge of 150 mm per year throughout the area, or an even higher recharge over some portion of the area.

The Ewens Ponds - Mount Schank Trough is bounded to the west by a poorly defined groundwater divide (observation bores are spaced at 5 km intervals in that area) and to the east by a more clearly defined groundwater divide. Both divides are shown on Figure 8. The area from which water drains through the Trough is approximately 1 040 km 2 , and the measured discharge at the coast is 4.2 cumecs. Porous medium flow across the 10 km strip can be calculated to be a maximum of 0.5 cumecs, giving a total discharge of 4.7 cumecs. This would require a recharge of 140 mm within the catchment defined by the groundwater divide, a similar value to that estimated for the entire area.

The Piccaninnie Pond discharge drains 225 km² of the area, with a coastal strip of 10 km suggested by the groundwater divide, and may derive some of its water from western Victoria. The measured discharge is 1 cumec, and porous medium flow across the coastal strip can be calculated to be a maximum of 0.5 cumecs. This would require a recharge of 210 mm within the catchment. As there is unlikely to be significantly more recharge within the Piccaninnie Pond catchment than elsewhere in the area south of Mount Gambier two possibilities exist. Either the porous medium discharge estimate is too large, or there is a component of groundwater movement from the east, in Victoria. The latter explanation seems more likely.

In summary it seems likely that the springs constitute about 75 to 80% of the discharge from the system, the remainder being by porous medium flow. The bulk transmissivity which has been calculated for the aquifer suggests that most of the water movement takes place along a fracture/solution cavity system which extends inland for some distance from the Ewens Ponds area and suppresses the large seasonal fluctuations which might be expected with such a system. The current estimates of

recharge are too low for the area south of Mount Gambier, where thin sandy soils and karstic pavements probably allow infiltration to reach 100 to 200 mm per year.

6. HYDROCHEMISTRY OF UNCONFINED AQUIFERS

A. GENERAL

The analytical data accumulated from sampling the observation bore grid is listed in Appendix G. Examination of the data revealed that the nitrate ion was commonly present in significant or even dominant proportions. As it is an unwelcome addition to the natural system, the natural hydrochemistry of the unconfined aquifers can only be studied using samples suggested by low nitrate concentrations to be uncontaminated.

Historical data are unreliable or unavailable. Nitrate concentration was either determined only as ammonia (not now considered a reliable technique) or not determined by analyses at all, and the sampling methods were rarely documented. Old data invariably could not therefore be used to improve the reliability of the interpretation, or to establish any trends in water quality.

The current hydrologic model for the area suggests that surplus precipitation is removed by groundwater of local origin. Studies of the chemistry of the dissolved salts in the groundwater were made to check this hypothesis. Several whole rock analyses are presented in Appendix H, revealing CaCO₂ dominant in most cases.

In this context analyses were examined where the nitrate concentrations was below 10 mg/l (arbitrarily regarded as uncontaminated) and where the sample was obtained using pumping windmills or the portable pumping unit to ensure representative samples.

The chemistry of the groundwater is controlled by several factors apart from extreme contamination. These are:

- (1) Soil type (less important where the soil is thin and sandy),
- (2) Ion exchange with clays in the soil and the aquifer material,
- (3) The proportion of dolomite in the limestone through which the water has moved.

- (4) Residence time of water in the aquifer in the area sampled, and
- (5) Agricultural practice resulting in minor alterations to chemistry from fertilizers.

B. IONIC BALANCE

The low salinities and large values of hydraulic conductivity demonstrate that connate water does not need to be considered when examining the composition of the water.

The aquifer is dominantly a calcarenite, with dolomitic and flinty zones. Water samples generally had pH values in the range 6.5 to 8.5, and the dominant carbonate special expected is therefore the bicarbonate ion, HCO_3^- (Garrels and Christ, 1965), in conjunction with Ca^{++} and generally lower concentrations of Mg^{++} .

Other constituents for which analyses were made, such as Na^+ , K^+ , $C1^-$, $S0_A^-$ were considered most likely to be derived from cyclic salt.

The data were analysed to test the hypothesis that the chemical composition of the groundwater could be explained as a first approximation in terms of dissolution of calcarenite and addition of cyclic salt.

(i) Cyclic Salt Contribution

The main constituents of sea water (from Krauskopf, 1967) are listed in Table III.

TABLE III - MAIN IONIC CONSTITUENTS OF SEA WATER

COMPONENT	CONCENTRATION MOLAR RATIO			
	mg/1	millimoles/litre	with respect to C17.	
C1 ⁻	18 980	535	1.00	
50 ₄ = Na +	2 649	27.6	0.052	
Na ⁺	10 556	459	0.858	
Mg ^{++·}	1 272	52.3	0.098	
Ca ⁺⁺	400	10.0	0.019	
K ⁺	380	9.72	0.018	

The ratios of $SO_4^=/Cl^-$ tabulated below (Table IV), correspond reasonably well with the ratio for sea water. In particular, the overall average of 0.066 compares well with 0.052 for sea-water, and indicates only a slight excess of $SO_4^=$.

Similarly the ratios of K^+/Cl^- and Na^+/Cl^- listed in Table IV correspond well with the sea-water value, but again with a slight K^+ and Na^+ excess.

Both sulphate and potassium concentrations in the samples were low (e.g. 0-35 mg/l for sulphate), and percentage errors in analytical determinations would have been maximized.

4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,				
HUNDRED	AVERAGE SO ₄ =/C1-	AVERAGE K ⁺ /Cl ⁻	AVERAGE Na ⁺ /C1 ⁻	
Blanche	0.062	0.030	1.05	
Caroline	0.059	0.014	0.95	
Gambier	0.050	0.008	0.96	
MacDonnel1	0.155	0.017	0.96	
Mingbool	0.031	0.024	1.00	
Young	0.084	0.025	1.13	
Overall	0.066	0.021	1.02	
SEAWATER	0.052	0.018	0.86	

TABLE IV - MOLAR RATIOS - SO_4 -/C1, K+/C1 and Na+/C1

Thus $SO_4^{=}/Cl^{-}$ and K^{+}/Cl^{-} show good agreement with the sea water ratios, with a slight, but consistent excess.

The obviously large contribution of Mg and Ca (in widely varying proportions) from dissolution of limestone and dolomite made it unrealistic to compare their chloride ratios with those of sea water.

(ii) Mass Balance

The aim of the examination of the analysis results was to balance the molar concentrations of the dissolved constituents by combination of ions based on their probable origin. Thus Ca^{++} and Mg^{++} were combined with HCO_3^- to form dolomite, the remaining Ca^{++} and HCO_3^- to form calcite, and the remaining ions subtracted in the proportions of seawater (Table III), based on Cl^- , the dominant anion.

Appendix I is an example showing a reasonable balance.

Generally the calcite/dolomite balance was good, however significant excesses of Na^+ or Cl^- were common. This suggests additional components for which analyses were not performed, such as silica $(\mathrm{Si0}_2)$, and flint, quartz arenite and sponge spicules would all contribute it to the groundwater. Minor excesses or deficiencies can be attributed to analytical errors, processes such as ion exchange in the soil layer and the arbitrary assumption that a sample was uncontaminated, which was based on the samples nitrate concentration alone.

C. CONCLUSIONS

The examination of the water analyses supports the view that the ground-water chemistry can be explained mainly in terms of cyclic salt and dissolution of dolomitic limestone. More detailed analyses (such as SiO_2) could be used to advantage, although the problems of contamination are hard to overcome.

7. GROUNDWATER CONTAMINATION

A. GENERAL

The Gambier Limestone is particularly suitable for subsurface waste disposal. It allows rapid passage of liquids from the surface to the water table by way of features such as swallowholes and vertical (often infilled) solution tubes and may permit rapid horizontal migration of pollutants.

Waste liquids, both industrial and domestic, have been discharged for more than one hundred years into wells, boreholes, caves and sinkholes (Plates 5 and 9). The result is introduction of various pollutants directly to the aquifer without dilution or filtration, particularly in and near Mount Gambier.

The problem is compounded by runoff from the city of Mount Gambier being drained down boreholes and sinkholes (Plate 6).

B. INDICATORS OF CONTAMINATION

(i) Nitrate

To date one of the most significant pollutants in groundwater at Mount Gambier has been the nitrate ion, NO_3^- , for which concentrations of up to 490 mg/l have been recorded. The generally accepted safe limit for NO_3^- concentration in water for human consumption has been 45 mg/l (U.S. Dept. of Health, 1962), although Hart (1974) recommends 10 mg/l, as there is the possibility of infants contracting the disease methemoglobinaemia when concentrations exceed this limit.

Nitrogen is not a major constituent of the Gambier Limestone, so any nitrogen compounds in the groundwater must have been introduced by infiltration or drainage.

It is possible to estimate the contribution of nitrogen to the groundwater from two pollution sources, Mount Gambier city effluent and cattle excrement, and to express each as a concentration of nitrate ion in a perfectly mixed aguifer.

Mount Gambier city effluent can be estimated on the basis of a population of 20 000, with each person contributing 11 lbs (5 kg) of nitrogen per year (Task Group Report, 1967). The volume of water in the aquifer can be estimated on the basis of a saturated thickness of 100 m beneath the city, with an aquifer porosity of 0.3. The approximate area of the city is 10 km^2 .

This effluent load would raise the nitrate concentration of the water in the aquifer beneath the city by 1.5 mg/l per year, and groundwater movement of a few metres per year is unlikely to significantly reduce this concentration in the short time.

The irregular input of effluent, slow rate of mixing and inhomogeneity of the aquifer will all tend to prevent a uniform increase in nitrate concentration, and an uneven distribution of high nitrates in the upper part of the aquifer could be expected. At least 50% of all effluent is now safely removed by the sewerage system, but the cumulative effects of at least 100 years of effluent disposal can be expected to have increased nitrate concentrations by 25 to 100 mg/l within the city area.

The contribution of nitrogen from the waste products of cattle can be estimated in a similar way. Stocking rates vary considerably with time and from place to place, but local Department of Agriculture representatives gave an estimate of 1 to 1.5 cows per acre as an optimum for rural areas. The maximum of 1.5 cows per acre is used here, that is, 3.7 cows/hectare (ha).

The waste products from 1 cow are equivalent to those from about 16.4 humans, each person contributing on average 11 lbs. of nitrogen (N) per year (Task Group Report, 1967). About 1300 kg $NO_3/ha/y$ can therefore be expected from bovine sources as a maximum estimate.

Recharge to groundwater in grassland near Mount Gambier has been estimated at 85 mm/year (Holmes and Colville, 1970a), from which the concentration of nitrate in the infiltrating water can be calculated to be 1 500 mg/l in an average paddock, stocked with cattle.

Such a nitrate concentration could be expected in the infiltrating water if the excrement were evenly distributed over the area of intake (with 3.7 cows per hectare), with 85 mm of recharge and no loss of nitrogen from the infiltrating water. The possibility of the high nitrate concentrations in local groundwater being caused by animal husbandry is thus demonstrated.

The actual nitrate concentration of recharge water in areas stocked with cattle has never been measured but will vary from the estimate because of interaction between the following processes.

- Cattle tend to congregate and defecate near stock troughs, and increased nitrate concentrations are to be expected there as a result.
- 2. Local cones of depression around windmills (usually adjacent to stock troughs) may tend to reduce dispersion of pollutants, accelerating the rate of increase of nitrate concentration.
- 3. During summer months nitrogen in the ammonia form may be lost in significant quantities whilst on the surface, and up to 30% may be volatilized from the soil (Bartholomew and Clark, 1965). Conditions favouring water loss also favour ammonia loss, and ammonia may be carried by upward moving soil-water to a zone from which it can volatilize.

- 4. During the period of active growth, uptake by plants is likely to reduce the amount of nitrogen available for recharge.
- 5. Although the nitrate ion is extremely mobile, ammonium is readily absorbed by clay in soils (Bartholomew and Clark, 1965). The thin and sandy soils found south of Mount Gambier allow the greatest possibility of ammonia movement.
- 6. Dung forms an essential food supply during the life-cycle of some insects.

 Unknown amounts of nitrogen will be withheld from infiltrating water in this way.
- 7. Recharge exceeds 85 mm in some areas, and nitrate concentrations in recharge water may be correspondingly reduced.

If the aquifer beneath a cattle paddock were 100 m thick, with a porosity of 0.3, the nitrate concentration of the groundwater could increase by about 1.5 mg/l per year. In practise the concentrations beneath the city area could be expected to be much greater than beneath an area stocked with cattle because of the variability of stocking rates and the mechanisms for nitrogen loss or fixation, which are effectively by-passed by the use of soakage pits and boreholes.

(ii) Bacteria

Bacteria are readily removed by passage of water through porous media, but are a problem in karstic zones where rapid flow along solution cavities may occur.

High (and unacceptable) bacteriological counts in water supplies have forced the Engineering and Water Supply Department to stop using certain water supply bores. Many private bores have also been sampled by the local Department of Agriculture and E. & W.S. Department representatives and have been found contaminated. Extremely high counts were reported in the old production bore of the Wattie-Pict Ltd. frozen food factory and investigations by E. & W.S. officers in 1972 failed to trace positively the source of pollution. Significantly, the bore penetrated two cavities during drilling and these presumably allowed ready transmittal of pollutants from nearby factory drainage bores.

(iii) Phosphate

Phosphates are found in animal waste products, and may also be derived from phosphate-based detergents. As background phosphate levels in groundwater in the area are very low (a large number of sample analyses contained less than 0.01 mg/l) it was hoped initially that phosphates might be a better indicator of pollution than nitrates.

Superphosphate fertilizer is used locally, and could be a source of pollution in rural areas. The amount infiltrating beyond the root zone will vary considerably, controlled by intensity of fertilizer use, soil type, plant type and karst features.

(iv) Phenols

Spillage and drip of creosote from impregnated timber treated at the State Sawmill (Figure 1) infiltrated the soil and was carried into a nearby sinkhole with runoff water, before a new treatment area was constructed. Very low concentrations of phenol in water may be detected by taste, although opinions vary on the actual detection limit. The U.S. Public Health Service (1962) limit and that of Hart, 1974 is 0.001 mg/l for human consumption.

Chlorophenols may be detected in water in much smaller concentrations than phenols. As the Mount Gambier town water supply is chlorinated, formation of chlorophenols from any phenols present in the water of the Blue Lake would be very serious.

(v) Metals

Pine Timber is "salt treated" at the State Sawmill by impregnation with a solution of copper, chromium and arsenic salts. Wastes from this process may reach the aguifer in the same ways as creosote wastes.

Maximum allowable limits are:

Cu: 1 mg/l (Hart, 1974)

Cr: 0.05 mg/l (U.S. Public Health Service, 1962 and Hart, 1974_.

As: 0.5 mg/l (Hart, 1974).

Observation bores were drilled near the sawmill to test for pollution by phenols or metals.

(vi) Dissolved Oxygen (D.O.)

Organic wastes typically deplete the oxygen dissolved in water. Organic contamination of bores should be indicated by low D.O. readings (possibly in association with the other analyses such as bacteriological counts and Chemical Oxygen Demand discussed below).

(vii) Chemical Oxygen Demand (COD)

COD was determined as a measure of the pollution load. The biological oxygen demand (BOD) is a more commonly used indicator of pollution, but is a slow determination and posed problems in this study because of the time involved transporting samples to the laboratories in Adelaide.

Table V shows the analyses performed to detect specific pollutants in the groundwater.

TABLE V - Analyses	for	Specific	Pollutants
--------------------	-----	----------	------------

POLLUTION SOURCE	POLLUTANTS	ANALYSES
Domestic	Sewage and other wastes giving rise to nitrogen compounds and phosphate.	Full*, NO ₃ , PO ₄ , COD, Total N in some cases, Bacteriological
Dairies and Piggeries	Wastes rich in nitrogen compounds.	Full NO ₃ , PO ₄ , COD. Total N,Bacteriological.
Cheese Factories	Whey and wastes rich in nitrogen compounds.	Full NO ₃ , PO ₄ , COD. Total N, Bacteriological.
Woods & Forests Department	Creosote, copper-chromium- arsenic salts.	Full NO ₃ , PO ₄ , COD. Phenol, Cu, Cr, As.
Others	Various, including pea wastes, glue, sawdust, oil etc.	Full, NO ₃ , PO ₄ , COD.

^{*} Full analysis is taken here to include Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺, Cl⁻, S0₄⁻, HC0₃⁻.

8. DISCUSSION AND INTERPRETATION OF RESULTS OF POLLUTION SAMPLING

A. NITRATE

All samples were analysed for nitrate. In addition, waters from bores near Mount Gambier were analysed to determine the form in which the nitrogen was present in the groundwater (Total N in Table V). Results of these special analyses are included in Appendix G.

"Free and saline" nitrogen is a measure of nitrogen present as ammonia, and "albuminoid" nitrogen is nitrogen contained in organic molecules. The nitrogen in reduced forms oxidises to nitrite and then to nitrate with time, given suitable conditions. Where anaerobic pools are used for effluent storage, nitrogen will remain in the ammonia form (Schmidt, 1972). These conditions might be expected in a stagnant, disused bore column, but not in the majority of waters sampled.

Most of the analyses were low in all nitrogen compounds except nitrate, although concentrations of other compounds were measurable in a few samples and indicate contamination by animal wastes or septic tanks. The ammonia in water from borehole BLA 28 related to a putrid sample from a disused bore - an obvious case of contamination of water in the bore column itself.

If nitrogen compounds such as ammonia were originally present as pollutants they have oxidised almost completely to nitrate by the time they reach the water table (during their passage through the unsaturated zone). Consequently, the treatment of spatial distribution and sources of nitrogen compounds in groundwater was restricted to examination of nitrates.

(i) Sampling Methods

As samples were collected in three different ways, it was important to test for bias in each of the different sampling methods, as they represent sampling from the aquifer at three pumping rates with consequent different chance of measuring contamination of the bore column. The portable pump has a capacity of about 2.5 l/sec, windmills about 0.5 l/sec, and a bailer removes a negligible amount of water from storage within the bore column. Figure 9 shows the correspondence between analysis results for samples and windmill, pumped and bailed sources in each area.

Water was withdrawn from the bores at varying depths in the aquifer, usually within the top 20 m. A plot of nitrate content of sample versus depth below the water table for samples obtained with the portable pump (Figure 10) demonstrates the lack of any relationship between composition and depth of sampling within the range of depths from which samples were taken in the pollution survey.

Samples taken from springs and sinkholes although few in number also conform with the distributions of the main three sampling methods.

It appears that sampling method is not a controlling factor for the nitrate concentration of groundwater samples in this instance.

(ii) Nitrates in Stratigraphic Bores

Representative water samples were taken at various depths during the drilling of each stratigraphic bore. The nitrate profiles are shown on Figure 11, revealing a slight or marked decrease in nitrate concentration at depth, or uniformly low concentrations at all depths.

This is consistent with nitrate derived relatively recently from surface sources, with the lower, less active zones of the aquifer not yet having mixed sufficiently with the upper nitrate rich zones.

Bore BLA 76 appears anomalous, but only on the basis of one analysis. Bore KON 1 shows a fluctuating pattern of low nitrate concentrations, but as they are in the range 10-20 mg/1 this is likely to be a natural pattern.

(iii) Statistical Treatment of Data

It was thought that bores in the Mount Gambier area might have higher nitrates than bores in the surrounding areas, as a result of the higher population density and greater intensity of waste disposal, but this was not obvious by inspection of analytical results. Figure 12 shows the contoured distribution of nitrate concentration and the very significant effects of point sources.

In an attempt to discover the role of the city of Mount Gambier and near environment in the regional nitrate distribution, the results were separated into two groups; one (Area A) of samples taken within a radius of 5 km of the city centre and the other (Area B) to include all other samples.

To check the possibility of high nitrate concentration resulting from essentially local effects, boreholes were divided into two categories on the basis of the adjacent surface environment.

- (1) Bores <u>not</u> likely to be directly polluted from adjacent surface features, and
- (2) Bores considered to be located such that surface features (houses, stock-troughs, dairies etc.) could directly contaminate the aquifer in the area adjacent to the bore. A distance of 100 m was arbitrarily chosen as the limiting distance between bore and pollution source, although most were much closer.

A fifth group was formed from samples taken from those bores situated within the Mount Gambier metropolitan area.

Statistical techniques were applied to the data to estimate the probability of independence between the different sample groups. Table VI shows the calculated probabilities of independence between the different groups, including the total population.

The log normal distribution was chosen because the data can be shown to fit that form closely. There were no values of nitrate concentration zero, or less, and the curve had a long positive tail. An analysis result of zero mg/l means that the nitrate concentration of the sample was too low to measure, not that nitrate was absent from the samples. The independence probabilities were determined by independence areas under the calculated normal curves for the logarithm to the base 10 of sample nitrate concentration. The measure obtained will always under-rate the independence between the groups, as there must be overlap between sample groups even if they are quite independent.

TABLE VI - Independence probabilities for Different Sample Groups

SAMPLE GROUPS COMPARED	INDEPENDENCE PROBABILITY	···········
Bores Likely to be Polluted - Total	6%	·
Bores Not Likely to be Polluted - Total Bores Likely to be Polluted - Bores Not	14%	
Likely to be Polluted	20%	
Area A - Total	31%	
Area B - Total	5%	
Area A - Area B	37%	
Mount Gambier Metropolitan - Total	58%	
Mount Gambier Metropolitan - Area A	30%	•

Borehole Environment The probabilities of independence between the sample groups selected on the basis of nearby surface features likely to cause contamination are low when compared with the total population. The two groups have a 20% probability of being independent of one another, which, while low, is still significant. The surface environment near the borehole cannot be said to exert a controlling influence on the sample nitrate concentration, or by implication, to be a major source of pollution. The local environment may still be very important in individual cases, however.

Spatial Distribution Samples from Area B have only a 5% probability of being independent of the total population (82% of all boreholes sampled are in AreaB), but samples from Area A have a 31% probability of being independent of the total population, and a 37% probability of being independent of samples from Area B.

This moderate probability of independence between the samples from Areas A and B is believed to result from the effects of waste disposal in Area A. Figure 13 shows sample histograms with 10 mg/l and 25 mg/l class intervals for those samples from bores in the two areas, with a shift in the peaks from a low 0-10 mg/l in Area B to 30-40 mg/l in Area A. Natural nitrate concentrations are expected to be of the order 0-25 mg/l.

The most significant departure from the total population is provided by samples from the Mount Gambier metropolitan area. They have a 30% probability of being independent from Area A (and comprise 20% of the population from that area) and a 58% probability of being independent from the total population.

Figure 14 presents the calculated normal distributions for the logarithms of sample nitrate concentration for the groups discussed. The departure of the distributions for samples from both Area A and the Mount Gambier metropolitan area from the other distributions is clearly illustrated.

There are not significantly greater stock populations in Area A than Area B, and the most important difference is the high human population and the intensive subsurface waste disposal. Samples from Mount Gambier metropolitan area ranged from 45 mg/l to 300 mg/l nitrate, consistent with the predicted order of magnitude; (see page 30).

(iv) Change in Ionic Constituents with Increasing Nitrate

In an attempt to determine which constituents were added to groundwater with the nitrogen compounds, the dependence of Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺, C1⁻, HC0₃⁻, $S0_{\Delta}^{-}$ and $P0_{\Delta}^{-}$ upon nitrate concentration was tested.

There is a tendency for samples with high nitrate concentrations to show corresponding higher than usual concentrations of other components, but good correlations between individual components were not exhibited.

Correspondence between Cl $^-$ and NO $_3^-$ ions can indicate contamination by septic tank effluent (Schmidt, 1972). Na and Ca appeared to be the main balancing cations, with a smaller proportion of Mg.

The compositions of samples were plotted on Piper diagrams, on Figures 15, 16 and 17. The plot of the relatively uncontaminated samples is shown in Figure 15. Samples from Hundreds of Gambier and Blanche with nitrate concentrations greater than 50 mg/l are plotted on Fig. 16 and those from Caroline, MacDonnell, Mingbool and Young on Figure 17. The resultant distributions show the obvious effects of the increasing nitrate (as an increase in its percentage of total anions) by a shift of points towards the $SO_4^- + NO_3^-$ corner (effectively the NO_3^- corner) and away from the HCO_3^- corner.

Cation distribution shows a slight shift away from the Na $^+$ corner, without much increase in the amount of Mg $^{++}$ suggesting that more Ca $^{++}$ has gone into solution with the NO $_3^-$ and Na $^+$ and Mg $^{++}$.

(v) Blue Lake Nitrates

The variation of nitrate content of Blue Lake water (with time) is shown on Figure 18. The recent high nitrates are not a unique occurrence, the highest recorded level being in 1944. Records start in 1924, some 80 years after European settlement.

Analyses of water samples from the Blue Lake (from records kept by the E. & W.S. Department) show that nitrate concentration does not vary with depth, and was about 12 mg/l when sampled in 1972.

This shows that nitrates have not entered the lake in sufficient quantity to significantly affect water composition.

Some more rapid transmittal of pollutants is possible along solution cavities, but explored caves in the area which extend to the water table rarely exhibit flowing water (F. Aslin, S.A. Dept. Mines, pers. comm., 1972). This mechanism is unlikely to contribute to any pollution of the lake.

A continued rise in nitrate concentration in the lake is probable in the long term, even if all underground discharge is halted immediately, unless there is a major contribution of water from the underlying Knight Group aquifer.

B. PHOSPHATES

Concentrations of phosphates are usually less than 1 mg/l and frequently less than 0.01 mg/l. The highest concentration (12.3 mg/l) is associated with a bailed sample of putrid water from bore BLA 28.

Fig. 19 shows sample histograms of phosphates showing a distribution with very few concentrations greater than 0.2 mg/l, and most less than 0.01 mg/l, in both areas A and B. Samples with high phosphate concentrations correlate with high nitrate in a few cases – suggesting contamination by animal wastes. The other samples with high phosphate concentration fall into a distinct group with low nitrate concentrations. Table VII shows the 11 samples with greater than 0.2 mg/l $P0_A$.

All samples in Table VII except GAM 12 and GAM 58 have obvious local sources of contamination.

Bore BLA 61 was sampled immediately after a windmill was started (Sample BLA 61A) and again after 15 minutes (Sample BLA 61). In that time phosphate dropped from 0.73 to less than 0.01 mg/l, indicating that the high phosphate was associated with water in the upper part of the bore column, i.e. not associated with aquifer contamination.

Bore GAM 58 is immediately south of the State Sawmill, with no obvious features likely to cause phosphate contamination. Bore GAM 12 has no obvious local source of PO_A and both may be the result of superphosphate use.

TABLE VII - SAMPLES WITH GREATER THAN 0.2 mg/l PHOSPHATE

-41-

-2					
BORE NO.	mg/1 P0 ₄	mg/1 NO ₃	SAMPLING METHOD	AREA	COMMENTS
BLA 4	0.45	490	Bailed	Ä	Bailed sample from W/M adj. house.
BLA 32	0.20	265	Bailed	В.	Disused, in house yard adjacent to dairy.
GAM 57	0.92	495	Bailed	В	Clean sample, W/M adjacent to house.
MIN 14	1.75	105	W/M	В	Clean sample, W/M started for sample (adjacent troughs and stockyards).
BLA 28	12.3	27	Bailed	Α.	Disused bore, completed at ground level, putrid sample.
BLA 29	0.25	20	Bailed	A	Moderately bailed sample, D of M bore on roadside - no adjacent features to contaminate.
BLA 50	0.2	14	Bailed	В	Open bore in shed - small dead animal. Bird droppings in profusion.
BLA 92	1.0	30	W/M	В	Windmill with adjacent trough.
GAM 12	1.35	55	Pumped	Α	Dept. Mines observation bore, clean sample
GAM 58	085	13	Pumped	Α	Dept. Mines observation bore, clean sample. On railway line adj. State sawmill.
CAR 23	1.2	12	Pumped	В	Pumped well - dirty water - dead birds in water, dead sheep 1 year before.
4	,				

In summary phosphate concentrations are not sufficiently high to allow assessment of regional pollution. Sampling method appears to be the main controlling influence.

C. DISSOLVED OXYGEN, CHEMICAL OXYGEN DEMAND

Dissolved oxygen concentrations cover a wide range (expressed in mg/1, in Appendix G), from less than 1 mg/1 to greater than 10 mg/1. Ranges and averages for separate hundreds, areas A and B, and the total area are shown in Table VIII. Generally the values are similar except for noticeably lower dissolved oxygen concentration in the Hundreds of Mingbool and Young, where less permeable soils overlie thin Gambier Limestone, depth to the water table is small (swampy conditions are common), and infiltration rates lower.

Figure 20 shows histograms of dissolved oxygen concentration. Both distributions are bimodal, and both peaks show a shift to the lower dissolved oxygen values for boreholes likely to be polluted compared with those not likely to be polluted.

Samples from bores in the Hundreds of Mingbool and Young fall in the lower dissolved oxygen classes in both histograms reflecting lower oxygen concentrations in groundwater in those Hundreds. The dotted line showing the histograms for the four Hundreds, Blanche, Caroline, Gambier and MacDonnell lacks the bimodal character, showing the influence that the low values in Mingbool and Young have on the overall distribution.

Table VIII shows the ranges and averages of COD and DO in the area sampled. COD values cover the range from less than 5 mg/l to 80 mg/l, although all but two are below 50 mg/l. At these low values a dilute dichromate solution is used for the determination, and the error in determination may be up to 20 mg/l (N. Blesing, Amdel, pers. comm.). Differences of less than 20 mg/l cannot therefore be interpreted as having significance in terms of pollution load in the samples analysed. The COD averages are all in the 15-20 mg/l interval, and their differences are regarded as insignificant.

-43TABLE VIII - DO and COD (in Hundreds)

	MIN(mg/1)	MAX(mg/1)	AVERAGE(mg/1)	HUNDRED
DO	1.8	10	8.3	BLANCHE
COD	5	70	17.9	
DO	0.5	9.8	6.6	CAROLINE
COD	5	50	16.7	
DO	1.1	10.6	7.0	GAMBIER
COD	5	30	15.2	
DO	2.0	10	6.3	MACDONNELL
COD	5	35	16.5	
DO	1.3	4.5	2.7	MI NGBOOL
COD	10	30	18.1	
D0	1.5	10.0	4.8	YOUNG
COD	10	80	20	
DO	5.4	10.6	8.4	AREA A
COD	5	70	16.5	
DO	0.5	10	6.4	AREA B
COD	5	80	17.1	
D0	0.5	10.6	6.8	TOTAL AREA
COD	5	80	17.0	

The low values indicate that contamination with oxidisable substances such as organic compounds has not had a measurable impact on the groundwater to date. This reflects the aerobic conditions expected in the unsaturated zone, where oxidisable materials will be oxidized before reaching the water table, and in the upper zone of the aquifer where DO is high.

Only two bores with a COD greater than 50 mg/l were encountered. Both samples were putrid water, collected by bailing, and indicate contamination of the bore water column itself.

The plot of COD vs DO on Figure 21 shows that samples with low COD cover complete range of DO values. The two higher COD samples have low DO values, suggesting depletion of oxygen in the bore, as would be expected. The range of lower DO values with low COD are likely to reflect two factors:

- (1) Depletion of oxygen by a limited pollution load,
- (2) Depletion of oxygen due to other factors e.g. respiration by plant roots.

Some samples known to be contaminated (e.g. dead sheep in well) did not have a correspondingly high COD - throwing more doubt on the usefulness of the method as an indicator of pollution in this situation.

D. SPECIAL ANALYSES (Appendix K)

(i) Phenol

All but three analyses were below the detection limit (1 mg/l) and indicate a lack of creosote contamination in the aquifer in the vicinity of the State Sawmill - where the creosote wastes are likely to reach the water table.

Water from bore BLA 28 in the Mount Gambier metropolitan area (a bailed, putrid sample) was first recorded by Amdel as 80 mg/l phenol, and re-analysed at 3 mg/l. The results have no significance when the condition of the water sample is considered.

Samples from bores BLA 39 and bore BLA 82 contain 1 mg/l phenol, however there is no obvious source for phenol.

Analysis for phenol at low concentrations in a laboratory is a difficult task, and a single analysis result of 1 mg/l phenol is not a reliable figure on which to base any conclusions.

(ii) Copper-Chromium-Arsenic

Copper - All but two samples were below the detection limit.

Bore BLA 39 was found to contain 0.06 mg/l Cu, and Bore GAM 12, 0.26 mg/l Cu. As CuSO₄ was used as a preservative (see Appendix C) in samples taken at the same time, the most likely explanation of the Cu analysis results is contamination during sampling, as no obvious sources of Cu are evident near the bores.

Chromium - All samples were below the detection limit.

Arsenic - All samples were either below the detection limit, or at that limit (0.005 mg/l). This is not an unrealistic natural concentration, and is not regarded as indicative of contamination.

In summary no significant concentrations of copper, chromium or arsenic were detected in the areas around the State Sawmill and the Softwood Holdings factory. If significant pollution has taken place, it has not yet migrated as far as the sampling points.

E. BACTERIOLOGICAL ANALYSES (Appendix L)

Samples were taken from bores using the portable pump where possible, as it was believed that the risk of contamination was too great with other sampling methods.

All bores had been drilled at least two months prior to sampling, and some were over 1 year old, reducing the chance of contamination introduced during the drilling process giving misleading indications.

Bolivar Laboratories of the E. & W.S. Department, in which the analyses were performed, commented that those bores with three indicator conganisms present could be considered polluted. GAM 56 is omitted from their list, presumably due to the small amounts of the indicator organisms present, although three were detected.

The results are presented in Appendix K, with comments about the location of bores, whether local contamination is expected, and the sampling methods used.

Samples with three indicator organisms fall into three groups, with only one exception (Bore BLA 30).

- (1) Bores considered likely to be contaminated (10 samples)
- (2) Bores sampled by bailing (3 samples).
- (3) Bores sampled with the portable pump, but where the low bore yield drastically reduced pumping time because the bore column was rapidly pumped dry (4 samples).

Groups (2) and (3) represent poor sampling techniques. This was realised in the field, but where the E. & W.S. Department personnel were on site it was considered worthwhile to sample the bore. Not all bailed samples had high bacterial

counts (e.g. bore GAM 67), but a high count from a sample obtained by bailing or short term pumping cannot be considered to indicate contamination of the aquifer.

The high levels of bacterial contamination in sampled bores can be ascribed to local borehole contamination or improper sampling.

No useful relationships between bacterial counts and either COD or DO were disclosed by the survey.

F. CONFINED AQUIFERS

Boreholes BLA 66 and BLA 88 were the only pumped sampling points for the confined aquifers.

There was no indication of contamination of the aquifer on the basis of nitrate or phosphate. Dissolved oxygen was found to be low in both, and consistent with the reducing environment (black, pyritic clays).

The production bore at the Wattie-Pict Factory has been tested repeatedly for bacteriological quality by officers of the Engineering and Water Supply Department since 1972, with consistently negative results (P.D. Harvey, pers. comm., 1975).

G. CONCLUSIONS

The nitrate ion is the only component for which analyses were made that is a useful indicator of pollution of the Gambier Limestone aquifer. Other constituents or analyses (phosphate, dissolved oxygen, chemical oxygen demand, bacteriological tests, copper, chromium, arsenic and phenol) are useful for detection of extreme borehole contamination in a restricted area. The subdivision of the sample nitrate population on the basis of sampling method, local borehole environment and location has allowed certain conclusions to be drawn.

- (i) There is no overall control of nitrate concentration by the method of sampling.
- (ii) When samples were divided into groups on the basis of pollution sources adjacent to the borehole, the resultant distributions had a 20% probability of being independent. This suggests that the division is valid, but that the local environment does not exert sole control over the nitrate concentration of a sample.

(iii) Samples taken from the Mount Gambier metropolitan area form a statistically independent group (at a 58% level of probability) from the total sample population. Thus it can be stated that the top 20 m of the aquifer in that area shows significantly higher nitrate concentrations that elsewhere, probably caused by subsurface effluent disposal over a prolonged period.

Nitrate concentrations in the groundwater have not yet significantly affected water in the Blue Lake, because of the slow rate of movement of the groundwater, low nitrate concentrations at depth in the aquifer, and a possible contribution of water to the lake from the underlying confined aquifer. A long term rise is likely unless there is a major contribution of water from the confined aquifer to the lake.

There is no evidence of pollution of the confined aquifer underlying the Gambier Limestone.

9. RECOMMENDATIONS

A. GENERAL

It is concluded that water suitable for human consumption is unlikely to be available from unconfined aquifers in the Mount Gambier city area because of the problems of pollution. Investigations to determine the extent of good quality water elsewhere in the deeper sub-aquifer of the Gambier Limestone are strongly recommended with a programme of testing both sub-aquifers and the vertical leakage that development of the lower would induce.

A further study to determine the proportion of Blue Lake water derived from the confined aquifers is essential if its long-term viability as a town water supply is to be assessed.

A detailed investigation of agricultural sources of nitrogen in the area was discussed in 1973, but lack of funds and staff in the Department of Agriculture has prevented further action. This is an important project, as the suitability of agricultural practices on various soil types in the area should be assessed in the context of groundwater pollution and recharge.

The unresolved components of the water balance for both aquifers need study, with initial concentration on recharge in the area south of Mount Gambier, and to the confined aquifer north of Mount Gambier.

Determination of aquifer parameters and characteristics of the confined aquifers is essential to ensure that their development is properly managed. A study of their area of recharge is particularly relevant in the context of forest hydrology.

B. MANAGEMENT PROPOSALS

Action to control and monitor the effects of man's activities on the groundwater resource is essential for its long term preservation. Some aspects will be dependent upon future studies of, for example, agricultural pollution and reduction of recharge by forests, but others can be stated.

Relatively polluted water supplies have been proved in as yet undefined areas from the middle zone of the Gambier Limestone. Protection of this water from contamination by correct borehole construction is essential.

Localized contamination from stockyards, dairies etc. can be difficult to control, but correct siting of supply bores as far as possible from pollution sources may provide acceptable quality water. Pumping water to stock troughs at least 100 metres from supply bores is an example worthy of adoption.

Although legislation gives the power to control waste disposal, there are still many outstanding examples of pollution hazards, and abuses of authorized drainage bores are inevitable unless their use is actively policed.

Economic considerations fortunately limited development of the confined aquifers to a minimum prior to the enactment of protective legislation. Proper construction methods are now mandatory for any bore penetrating them.

The main requirement of management at this stage is to ensure that bores exploiting the confined aquifers are properly constructed, and sited suitably to minimise interference effects. Digital or analogue modelling techniques could well be used in the future when more aquifer parameters have been determined. Mainten-

ance of the hydraulic head above that in the unconfined aquifers is desirable, to ensure that downward leakage of polluted water cannot occur. This may prove essential to control water quality in the Blue Lake, if it is proved that a major proportion of its water comes from the confined aquifers.

J. Whater frame

JDW:FdeA 15/7/75

J.D. WATERHOUSE GEOLOGIST

10. ACKNOWLEDGEMENTS

The author would like to thank Professor Holmes and Dr. Veeh, of Flinders University, for their helpful supervision. Michael Cobb, of the South Australian Department of Mines, deserves special thanks for not only beginning the project, but also being willing to discuss it patiently for more than two years.

Permission to use data from the Department of Mines, the Engineering and Water Supply Department and the General Exploration Company of Australia Pty. Ltd. is gratefully acknowledged.

The continuous enthusiasm of both Fred and Jan Aslin at Mount Gambier stimulated the project's development at all stages.

Steve Barnett assisted greatly with early compilation of data. Many routine calculations and statistical analyses of data were performed by the Geophysical Services Section of the Department of Mines with the aid of Graham Pilkington.

Jeff Valentine carried out the survey of land-use adjacent to the observation bores sampled in the pollution survey.

REFERENCES

- Allison, G.B. and Holmes, J.W., 1973. The Environmental Tritium Concentration of Underground Water and its Hydrological Interpretation. J. Hydrol., 19: 131-143.
- Allison, G.B. and Hughes, M.W., 1972. Comparison of Recharge to Groundwater under Pasture and Forest using Environmental Tritium. J. Hydrol. 17: 81-95.
- Anonymous, 1972. Land Use and Water Tables. Rural Research 78.
- Bartholomew, M.V. and Clark, F.E., (Ed.), 1965. Soil Nitrogen. Monograph 10, American Society of Agronomy.
- Blackburn, G., 1959. Soils of County Grey, South Australia. Soils and Land Use Series No. 33, C.S.I.R.O., Australia.
- Blackburn, G., 1966. Radiocarbon Dates Relating to Soil Development, Coast-line Changes, and Volcanic Ash Deposition in South-east South Australia.

 Aust. J. Sci., Vol. 29, No. 2, pp. 50-52.
- Blackburn, G., 1966. Carbon date of Mount Gambier, Radiocarbon 8, p. 61.
- Bleys, C. and Warner, K.R., 1963. Results of Pump Tests of C.S.I.R.O. Bores,
 Nangwarry. S. Aust. Dept. Mines unpublished report, R.B. 56/91.
- Boucaut, W.R.P. and Waterhouse, J.D., 1973. The South-East Defined Areas Their Hydrogeology and the Reasons for their Proclamation Under the Underground Waters Preservation Act. S. Aust. Dept. Mines unpublished report R.B.73/210.
- Bowering, O.J.W., 1973. Pumping Test Results on Water Bore MI-1 at Snuggery Report No. 1. S. Aust. Dept. Mines unpublished Report R.B. 73/166.
- Clisby, R.L., 1972. Spring Discharges, Hundreds MacDonnell and Caroline, South-East Region, South Australia. S. Aust. Eng. and Water Supply Dept. unpub. rept. PD 96.
- Cobb, M.A., 1972. South East Water Resources Regional Bore Network. Water Table Contours, March, 1972. S. Aust. Dept. Mines unpublished Plan, Number 72-1093.

- Cobb, M.A. and Waterhouse, J.D., 1974. Two Model Hydrogeological Environments in South Eastern South Australia. S. Aust. Dept. Mines unpub. rept. R.B. 74/116.
- Colville, J.S., and Holmes, J.W., 1972. Water Table Fluctuations under Forest and Pasture in a Karstic Region of Southern Australia. J. Hydrol. 17: 61-80.
- Director of Meteorology, November, 1966. Rainfall Statistics South Australia.

 Commonwealth of Australia Bureau of Meteorology.
- Edwards, N.H., 1973. South East Water Resources Investigation. Location and Levelling of Selected Observation Sink Holes and Springs in the Mount Gambier Area. Survey Report No. 1, Part County Grey. S. Aust. Dept. Mines unpub. (confidential) rept. R.B. 775.
- Floegel, H., 1972. The Position of the Lower Tertiary Artesian Aquifer Within the Hydrogeology and Hydrochemistry of the Gambier Embayment Area (South Australia/Victoria). Unpublished Ph.D. Thesis, Breslau University, Germany.
- Fenner, C., 1921. The Craters and Lakes of Mount Gambier, South Australia.

 Trans. R. Soc. S. Aust. 45.
- Fergusson, G.T. and Rafter, T.A., 1957. New Zealand C-14 age measurement No. 3
 N.Z. Jl. Sci. Technol. 38B: 732÷733.

ťΦ

- Firman, J.B., 1973. Regional Stratigraphy of Surficial Deposits in the Murray

 Basin and Gambier Embayment. Rep. Invest. Geol. Surv. S. Aust., 39:

 68 pp.
- Garrels, R.M. and Christ, C.L., 1965. Solutions, Minerals and Equilibria.

 Harper and Row, and John Weatherill, Inc.
- Harris, B.M., 1970. Results of a Pumping Test on the Water Supply Bore for the South West Frozen Food Producers, Mt. Gambier. S. Aust. Dept. Mines unpub. rept. R.B. 70/137.

- Harris, B.M., 1971. South East Water Resources Investigation Proposed Activities in the Period from July 1971 to June 1976. S. Aust. Dept. Mines unpub. rept. R.B. 71/149.
- Harris, W.K., 1966. New and Redefined Names in South Australian Lower Tertiary Stratigraphy. Quart. Geol. Notes, Geol. Surv. S. Aust. 20.
- Hart, B.T., 1974. A Compilation of Australian Water Quality Criteria. Australian Water Resources Council Technical Paper Number 7.
- Holmes, J.W. and Colville, J.S., 1970a. Grassland Hydrology in a Karstic Region of South Australia. J. Hydrol. 10: 38-58.
- Holmes, J.W. and Colville, J.S., 1970b. Forest Hydrology in a Karstic Region of Southern Australia. J. Hydrol. 10: 59-74.
- Ide, D., 1971. Preliminary Survey of Potential Pollution of Underground Water in and around Mount Gambier. S. Aust. Eng. and Water Supply Dept. unpub. rept. in E.W.S. docket 3591/71.
- Jennings, J.N., 1972. An Introduction to Systematic Geomorphology, Volume Seven.

 Karst. (A.N.U. Press, Canberra).
- Krauskopf, K.B., 1967. Introduction to Geochemistry (McGraw-Hill Inc.).
- Lindsay, J.M., 1967. E. & W.S. Dept. Millicent Bores 2 and 5, Micropalaeontological examination of Gambier Limestone Sections. S. Aust. Dept. Mines unpub. rept. R.B.64/116.
- Ludbrook, N.H., 1961. Stratigraphy of the Murray Basin in South Australia.

 Bull. Geol. Surv. S. Aust. 36.
- McGowran, B., 1973. Observation Bore No. 2, Gambier Embayment of the Otway Basin.

 Tertiary Micropalaeontology and Stratigraphy. Min. Res. Rev., S. Aust.,

 135: 43-55.
- Ollier, C.D., 1967. Maars-Their characteristics, varieties and definition.

 Bulletin Volcanologique, Tome XXXI, pp. 45-73.
- O'Driscoll, E.P., 1960. The Hydrology of the Murray Basin Province in South Australia. Bull. Geol. Surv. S. Aust., 35: 300 pp.

- Parkin, L.W. (Ed.), 1969. Handbook of South Australian Geology. Geol. Surv. S. Aust.
- Pilkington, G., 1971. Port MacDonnell Resistivity Survey, August 1971.

 Northumberland 1 Mile Sheet. S. Aust. Dept. Mines unpub. Rept.,

 R.B. 71/171.
- Read, R.E. and Waterhouse, J.D., 1974. A pump Test of the Mount Gambier Aerodrome

 Bore Number 2 Section 593, Hd. Young. S. Aust. Dept. Mines unpub.

 rept. R.B.74/101.
- Schmidt, K.D., 1972. Nitrate in Groundwater of the Fresno-Clovis Metropolitan Area, California. Groundwater 10: 50-61.
- Sprigg, R.C., 1952. The Geology of the South-East Province, South Australia, with Special Reference to Quaternary Coastline Migrations and Modern Beach Developments. Bull. Geol. Surv. S. Aust. 29.
- Task Group Report, 1967. Sources of Nitrogen and Phosphorus in Water Supplies.

 AWWA 59: 344-366.
- Templer, G.J., 1972. The Laboratory Measurement of Storage Coefficient and Specific Yield for Compton Quarry Limestone. S. Aust. Eng. and Water Supply Dept. unpub. rept. PD 102.
- U.S. Dept. of Health, Education and Welfare, 1962. Public Health Service Drinking Water Standards. US Public Health Service Publication 956.
- Valentine, J.T. and Waterhouse, J.D., 1974. Production Tests of the Upper Knight
 Group Aquifer at Mount Gambier. S. Aust. Dept. Mines unpub. rept.
 R.B. 74/81.
- Ward, L.K., 1941. The Underground Water of the South-Eastern Part of South
 Australia. Bull. Geol. Survey S. Aust. 19.
- Waterhouse, J.D., 1973. Operating Procedures for the Portable Submersible Pump Unit, and Suggestions for Modifications. S. Aust. Dept. Mines unpub. rept. R.B. 73/65.

- Williams, H., 1941. Calderas and their origin. Bull. Dept. Geol. Univ. Calif. 25: 239-346.
- Woods, J.E. Tenison, 1860. On some Tertiary Rocks in the Colony of South Australia. Quart. Journ. Geol. Soc. Lond. 16 pp. 253-260.
- Woods, J.E. Tenison, 1862. Geological Observations in South Australia. London; Melbourne.
- Wopfner, H. and Douglas, J.D., 1971. The Otway Basin of South-eastern Australia.

 Special Bulletin, Geol. Surv. S. Aust. and Victoria. 464 pp.

APPENDIX A

Discussion of Cable-tool Drill Sampling and Interpretation

Methods of Drilling and Geological Sampling

All bores were drilled with cable-tool rigs by the percussion method. This entails the regular lifting and dropping of a drill string consisting of a bit, sinker bar (for additional weight) and jars (used to free jammed bits). Using water poured down the hole or that occurring naturally in the formation this method crushes the rock material to form a sludge, which is periodically withdrawn from the hole (and sampled) with a bailer (an open tube, with a flap valve at its base).

Sludge samples were taken every 2 m, with the casing driven (in most cases) close behind the bit at all times to minimize contamination of water and sludge samples from higher levels.

Several factors therefore complicate interpretation of the geological log.

(1) Grain size

The observed grain size of a sample will depend upon the time elapsed before the bailer is run into the hole, the proportion of fines cushioning the friable grains such as bryozoal fragments from the action of the bit, and the original grain size of the sediment.

Sorting of grains will take place within the borehole, the bailer and the sludge trench and bucket from which the sample is taken for bagging.

(2) Layering

Any sedimentary layering will be totally obliterated except for example in the case of a layered clay/sand, where layering may be preserved in small lumps (2 to 3 cm) brought up on the bailer.

Any major lithological variations accompanying layering, but thinner than the 2 m sampling interval, will tend to be masked by other material to a degree controlled by the thickness of the layer and the skill of the driller in recognising the change and sampling accordingly.

Thin marls and flint layers which can be observed in sinkhole exposures are good examples.

These problems can be overcome to some degree by taking tube samples - a method involving the driving of a tube vertically into the material at the bottom of a hole. This is only satisfactory for softer layers when using a cable tool rig.

APPENDIX B

Summary of Investigations

SUMMARY OF INVESTIGATIONS

Investigations carried out can be divided into three categories:

1. Stratigraphic investigations

Eight stratigraphic bores were drilled, with a combined depth of approximately 1 700 m. Their purpose was to investigate the Gambier Limestone aquifer in terms of its permeability fabric and thickness, in order to provide a geological framework for the observed hydrogeological features.

Table (page IX) shows the hydrogeological environment for each of the stratigraphic bores, partly as proposed by Harris (1971).

TABLE IX - Stratigraphic Bore Sites

	• *	·
BORE NUMBER	DEPTH (m)	REMARKS
BLA 76	171	Located in the zone of steep water table gradient north of Mt. Gambier.
BLA 77	132	Located in the extremely "flat" water table zone surrounding the Blue Lake.
CAR 9	226	Located to the east of the possible flow path suggested by water table contours.
CAR 10	300	Drilled at the coast to examine the salt- water interface near the above mentioned flow path.
CAR 11	298	Drilled at the coast to examine the saltwater interface near Piccaninnie Ponds.
GAM 72	185	Drilled in an area of moderate hydraulic gradient east of Mt. Gambier to examine the upper Knight Formation aquifer(s).
MAC 35	218	Located in the possible flow path south of Mt. Gambier.
KON 1	191	Located to the west of the possible flow path.

The bore locations are shown on Figure 3 and Map 1. Sludge, bit and tube samples were taken for geological and palaeontological examinations, and the geological logs are compiled in Appendix B.

All bores were geophysically logged, but their interpretation is not within the scope of this thesis.

Several of the grid observation bores also penetrated the full Gambier
Limestone sequence and where appropriate they have been used for their stratigraphic information.

All stratigraphic bores except CAR 9, KON 1 and MAC 35 fully penetrated the Gambier Limestone, the remaining three being halted when it was considered that the markedly permeable zones of the Gambier Limestone had been penetrated. The decision to stop drilling was probably unfortunate, in retrospect, as the bores are in an area where data is scarce. All were completed as observation bores in the unconfined aguifer.

2. Observation Bores

The initial "1 mile grid" of observation bores at Mount Gambier was laid out in 1971 by hydrogeologist M.A. Cobb, with sites in and near the Mount Gambier city area (pegged for drilling where private bores were unavailable) at a spacing of about 1.5 km.

Drilling of the observation bores commenced in mid 1971, and by late 1972, a total of 63 bores had been completed. Bores were usually drilled to penetrate about 10 m of the aquifer to allow sufficient available drawdown for sampling with the portable pump unit, with exceptions where bores were deepened to obtain stratigraphic information. Bores were completed with 6 inch casing and fitted with a locked cap and a identification marker.

The original grid was extended during 1972, particularly to the northwest, to examine interesting features in the water table contour plans revealed by the early water level measurements.

The grid, measured and sampled in late 1972, contained a total of 258 bores, including 3-mile grid bores which form a network covering most of the South East of the State.

3. Pollution Study

Samples were taken systematically from the observation bores and some springs and sinkholes (Map 1) to obtain a controlled, regional set of data. These data were then available for assessment of the degree of contamination of the aquifer in such terms as spatial distribution of pollutants, with particular reference to the Mount Gambier city area.

APPENDIX C

Water Sampling and Analysis Methods

Water Sampling and Analysis Methods

A. GENERAL

The sampling programme commenced in late October, 1972 and was completed in early December, 1972. Water samples were tested in the field for pH, temperature and dissolved oxygen content.

Three parameters were expected to vary significantly after sampling, and measurements made some time later would therefore have been useless.

pH was measured with a PYE Model 293 Meter with manual temperature compensation. Dissolved oxygen (D.O.) was measured with an E.I.L. Model 1520 portable Dissolved Oxygen Meter with automatic temperature compensation. Conductivity was measured with an Electric Switchgear Electrolytic Conductivity Measuring Set, Model MC-1, mark V. Temperature was measured with a mercury thermometer, or the temperature scale on the D.O. meter, (which was calibrated with the mercury thermometer).

It was considered feasible to take samples for bacteriological analysis from those bores pumped with the portable pump unit. For this purpose the pump unit was sterilised every morning during the pumping programme, with a solution of Sodium Hypochlorite. One teaspoonful to 44 gallons gave a solution of approximately 20 ppm free chlorine, which, circulated for 15-20 minutes was adequate to sterilise the unit. The concentration was decided after consultation with Mr. Robert Tucker of the E. & W.S. Department. The flushing action of 30 minutes pumping from a bore, prior to sampling, was considered sufficient to prevent contamination (from bores already pumped) of water from bores sampled later.

Samples were analysed at Amdel for the following constituents: Na^+ , K^+ , Ca^{++} , Mg^{++} , $C1^-$, $HC0_3^-$, $S0_4^-$, $N0_3^-$, $P0_4^\pm$, Chemical Oxygen Demand (COD). As samples were forwarded promptly to Amdel, Mr. Neville Blesing, a Group Leader in the Chemical Metallurgy Section, did not consider that significant change in constituents such as bicarbonate would take place if the sample bottles were completely filled and tightly sealed.

All samples for bacteriological examination at the Bolivar Laboratories of the E. & W.S. Department were collected during the sampling programme by Mr. David Maloney of the Mount Gambier Regional Branch of that Department.

Three additional types of analysis were made on certain samples, two of which required addition of reagents in the field as preservatives.

- Total Nitrogen Analysis addition of 0.8 ml of concentrated sulphuric acid per sample.
- 2. Phenol Analysis Phospharic acid to lower pH (about 5 ml/sample) and 1 g copper sulphate per sample.
- 3. Copper-chromium-arsenic analysis no reagents added.

All samples were collected in 1 litre, plastic, screwtop bottles. Samples for Total Nitrogen and Phenol analysis were air freighted to Adelaide daily for prompt analysis.

B. SAMPLING METHODS

A. Pumped Bores (77 samples)

Wherever possible bores were sampled using the Mines Department portable pump unit (see Waterhouse (1973), for details of operation), as this was believed to give the best sample of water from the aquifer by virtue of its capacity (about 2.5 l/s, much greater than a windmill pump). Bores were pumped for a minimum of 30 minutes where possible (to pump out the entire bore water column) the water being continuously run through a 44 gallon drum to provide a contingency sample. Some bores pumped dry in a matter of minutes, justifying the precaution.

The water hose was curled horizontally for a minimum of two turns in the base of the drum to minimize the vertical velocity component of the water. This reduced circulation of water within the drum in order to keep errors in D.O. measurements to a minimum, as measurements showed a gradual increase in dissolved oxygen with time when extreme turbulence of drum water occurred.

D.O. was measured with the electrode near the bottom of the drum to minimise dissolution of oxygen by sample water in contact with the atmosphere.

Temperature and pH were also measured in the flowing water, and were found to stabilise early in the pumping period.

Samples were taken as near as possible to the end of the pumping period to obtain as representative a sample as possible.

B. Windmill Samples (119 samples)

Most windmill samples were taken from the outlet pipe (generally above a storage tank) and field measurements made as soon as was practicable. Some windmills were not rotating (Swung out of the wind by tank float, or visited during calm conditions) and were started and/or operated manually. Most samples were clear but some were rusty.

C. Bailed Samples (58 samples)

Some unequipped bores were either inaccessible to the portable pump or of small diameter. These and sinkholes, springs, and inoperative windmills were sampled with a bailer. Field measurements were made as soon as possible after sampling.

APPENDIX D

Glossary of Terms

Glossary of Terms (After Cobb and Waterhouse (1974))

- Aquifer: A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.
- Confined Groundwater: Confined groundwater is under pressure, significantly greater than atmospheric, and its upper limit is the bottom of a bed of distinctly lower hydraulic conductivity than that of the material in which the confined water occurs.
- Cyclic Sodium Chloride: That proportion of the dissolved NaCl which is derived directly from the oceans as spray and incorporated in droplets within clouds to fall as rain.
- Groundwater: That part of subsurface water in completely saturated interstices.
- Hydraulic Conductivity: If a porous medium is isotropic and the fluid is homogeneous, the hydraulic conductivity of the medium is the volume of water at the existing kinematic viscosity that will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the direction of flow. Units ${}_{1}3_{T}-1_{1}-2$.
- Specific Yield: The ratio of the volume of water which the rock or soil, after being saturated, will yield by gravity to the volume of the rock or soil.

 The definition implies that gravity drainage is complete. (Dimensionless).
- Transmissivity: The rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of the aquifer under a unit hydraulic gradient. Units $L^3T^{-1}L^{-1}$.

- Water table: The water surface in an unconfined groundwater body at which the pressure is atmospheric. It is defined by the levels at which water stands in wells that just penetrate the water body. In wells which penetrate to greater depths, the water level will stand above or below the water table if an upward or downward component of groundwater flow exists.
- Water Table Contour: A line joining points on the water table which have the same static head, or height above a standard datum. Units L.
- Unconfined Groundwater: Water in an aquifer that has a water table as its upper surface.

APPENDIX E

Selected Geological Logs

DEPARTMENT OF MINES - SOUTH AUSTRALIA

								DEPARTME	NT OF MINES	- souti	H AUSTRALIA		•	SHEET 1 OF	. ہے:
								BOI	RE LOG .	HYDROG	EOLOGY				
H C D	ommer ogged	ed I	Blept R.B. 27 Cabl J.D	Too Too 2/3/7 e To Wate	he ohe ool er	in y ho	Com Circu (m)	n Spleted 8/4/ Ulation Wate	ection .715 Address .Adel 72 R.L. 27/2/23	aide Collar (M.S Surface ng 4!'	13•500s.	Born Zone	Docket No. 2 Depth 350 Co-ords E	/72 BLA.66 231/69	.72 .72
R	L EMAF	: RKS	. Co	mple	te	·d.	to	observe	water 1	evels	in the	Kn	ight forma	tion	
			· aq									-			
CASING	NWATERS CUT	wWATER LEVEL	A DEPTH (M)	GRAPHIC LOG	7 AGE	PENETRATION	6 RATE				DESCRIPTION				
22.42m & 6" (0.15m)			5 		OLIGOCENE - MIOCENE	Gambier limestone		0-0.5m 0.5-6m 6-12m	quartz well c CALCARE fragme calcar 1-2mm. yellow CALCARE brown f fragme quartz Cveral CALCARE brown	arentementents, neous eous eous eous eous eous eous eous	ite to ed, whi At lea max.1-2 grains, or silt Well c nts to 2 mm, 12 mm. ht brow Well ce ments t to 6mm.	O.2 tetstmmsu an emmn 20% n.	clay with mm, fawn, calcarenity 50% bryozo The rest bangular, rarely s d marl. But ted, angularic mm. 50% brook silt and solve	some re fragment al max. stained aff. alar, ryozoal ar, ryozoal	nts.

		2	3 4	5 6	7 8	9	State No.	246071502 Bore Serial No. 125/72 SHEET 2 OF 2
	22.42m of 6" (0.15m)		20_	7 1 1	OLIGOCENE Compton Conglomarate		17-18 m	CALCARENITE 30% bryozoal and other fossil fragments to 5mm. The remainder angular calcarenite fragments of two types. A. white bryozoal calcarenite. B. grey/white/brown colours, massive, minor black specks. ARENITE 75% quartz grains—colourless, milky and brown (stained) 0.1 - 3mm. Subangular to rounded. 25% Dark brown, ferruginous grains to 4mm.
Seal			-				20-22m 22-23m	Minor bryozoal fragments. LUTITE Dark brown. 50% arenite as above LUTITE Dark brown. Plentiful fine mica. Less than 5% silt size colourless quartz. Minor block subangular grains 1-2mm.
			25				23 - 30m	LUTITE Contains minor rounded to sub- rounded colourless quartz, silt size to 2 mm. Up to 5% fine mica and rare angular rock fragments and corroded pyrite grains. Carbonaceous
	of 4" (0.10m)				ocene t formation			
	/3.59 m		30_	0.000	Knigh		30-31m	SRENITE Pebbly. Sand size 50%. Rudite size 50%. Some binding black clay. Well rounded quartz pebbles to 2cm.
				0.00			31-32m	(Milky - colourless) ARENITE Coarse grained rounded - sub- rounded quartz. Up to 2.5mm, pale blue-colourless. 10% Carbonaceous
		-					32-33m	clay binding. ARENITE Even grained, well rounded quartz average grain size 1mm, in black clay. Quartz colourless and
			35_				33-35	milky. LUTITE Black, with common fine mica flakes. 50% poorly sorted quartz arenite. Angular to subrounded,
			4				END.	0.3-5.0m.
.	-							

SHEET	1	OF:	7
SMEET	ı	OI.	J

	DEPARTMENT OF MINES - SOUTH AUSTRALIA		SHEET 1 OF 3.
	BORE LOG HYDROGEOLOGY		
Hundred F Dwiner D Driller F Commenced 3	Observation Blanche Section Rd side adj.sect.588 Bore S Dept. of Mines Address Adelaide Fred Farrow 30.5.72 Completed 6.6.72 RL Collor (M.S.L.) ble Tool Circulation Water RL Surface	No. 246058801 Serial No. 149/72 Project No. BLA Docket No. 231 Depth 45 Co-ords E	.72 /69
		OTAL SALTS mg/E	ANALYSIS No.
28.20	26.07		.2545/72
REMARKS			
wwater level b Depth (m)	DESCRIPTION NOITH AGE RATE RATE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 - 4.0 m Dolomitic calcarenite, pink; well rounded quartz areni (occasionally to 1 mm); up strongly effervescent in ferruginous cement (dark) 4.0 - 6.0 m Dolomitic calcarenite, pink well rounded quartz areni to 10% of fragments stron 10% HCL: Minor marl. 6.0 - 8.0 m Dolomitic calcarenite, pink; calcarenite proportions; minor quartz 8.0 - 10.0m fossiliferous calcarenite, fragments to 3 mm, minor calcarenite, quartz areni 10.0 - 12.0 m Approx. equal proportions pink; & fossiliferous cal fossil fragments to 2mm. (0.1 - 0.2m) & marl. 12.0 - 14.0 No sample	te, 0.2-0.4 to 10% of f 10% HCL; 5% red-brown; m ; 30% angula te 0.1 - 0.2 gly efferves & fossilife n approx. eq arenite & m off white, f pink dolomit te & marl of dolomitic carenite, of	mm ragments of materia inor marl. r to mm; up cent in rous ual arl. ossil ic calcarent f white,

	•			
			, , , , , , , , , , , , , , , , , , , ,	1
1 2 3	4 5 6 7	8 . 9	State No. 246058801 Bore Serial No. /	49/72 SHEET 2. OF 3
	ulanatum in			
-20	, , , , , , , , , , , , , , , , , , , ,	-		
				,
25				
26.0	Junian International Control of C	1ESTONE	26.0 - 28.0 m Marl, buff; 20% fossilifer off white, fossil fragmer arenaceous calcarenite, p 8.0 - 30.0 m Approx. 40% Marl, buff, 40% pink, moderately to strong	nts to 2 mm; 20% ; pink.
-34	OZ/GOCENE	GAMBIER LIN	20% fossiliferous calcard fossil fragments to 7mm. 60.0 - 32.0m Marl, grey; 20% massive, sligrey fragments to 1 cm. Mart ments to 2 mm.	enite, off white, . ightly calcareous,
	T TAT		2.0 - 36.0 Marl, grey, stiff. Minor, magazine calcareous fragments to fossil fragments to < 2	5 mm; trace of
-3:				
			Fossiliferous calcarenite, o fragments to 4 mm; Marly of blue-grey calcisiltit cemented; minor massive fragments.	; 4 mm diam. lumps e, moderately

		٠	•												•.											
. •					1											•	,			•						
	2	3	4	5	6	7 8	9		S	tate No	o. 2.	460	58 <u>8</u> 0	01.		Во	re Seri	al No		14	9/72	,	SHE	ET	<u>3</u> o	F .3 .
			-		至		·	40	.0	- 42	2 . 0 1	m	MARI Ca	L. alc	Grey ared	v, s ous	tif fra	f. gme	Min nts	or to	mass 5 r	sive	sli	ght	1y	1
			-			ORNU TION		42	.0-	44.0	m		· S1	ub	angı	ılar	th to	ro	und	ed,	co	∠ 0. lour	1mm ted &	to	5mm)
			-45			KNIGHTF		44	.0-	45.0	m		SI	ub	angı	ılaı	th to nt o	ro	und	ed,	cle	ear	(0.11 & co	mm lou	to red	5mm)
								End	1 01	f ho	le 4	5 m	٠.		:				: · :							
												 *. •								٠.						
													: .				•							٠		
			-50				•	• .													<i>:.</i>					
			1											-												-
			-1										•											٠		-
			-55 — -										•			•			•	-						
							·			*.							• •	٠.		•				,		
																		٠.	٠.							
			-											٠		•								a.		:
			60-						,		•									•						
,	, .		_																		• •					-
			-									٠,			٠		. :	:				•				-
			45																•		٠					

DEPARYMENT:	OF:	MINES.	 SCUTH	AUSTRALIA

:			• • • • •					r	ΈΡΛΑΥΜΈ	NT OF	F MINES - SOUTH AUSTRALIA SHEET 1 OF 8
					·.			• .	Bill	1	FOO · HADEOCLOFOCA
ľ			Bore S	trat anche	igi	car	o h i c	Obs	/ gvat i		State No. 246066801 Adj. 668 Bore Serial No. 5/72
٠.	indre vner .	Y		of		105	5			Section Address	Adelaide N.G. 1 BLA 76
Dri	iller	ŀ	larry	Jam	es				· · · /	- duress	Docket No. DM 224/1/69
ľ				7/71			Con	pleted	25/9/	7.1	R.L. Collar (M.S.L.) Depth 1/1 til
Dri	II typ	e		Cuss			Circ	ulation. Dote	5/11/	71	R.L. Surface Co-ords E . Casing 6m of 0.15.205, Zione N
LO				WATE			L (m	T		<u> </u>	HOW TESTED TOTAL SALTS mg/g ANALYSIS No
ATERS CUT			140 157		34 35	4					500 3359/7] 555 3367/7]
WATE	•	 									
RE	MAF	≀ĸs	CEM	ENI (GRC)(/	r (2	5 .GA	LLONS.		(AL) REIMELM CAWRIEL AND KNICHT
	TE	11		<u></u>	T		7		COMPLE	111.0	AS AN OBSERVATION DONE 4.40 ch. ALR ENGIQUANG.
CASING	ATERS CU	WWATER LEVEL	OEPTH (m)	GRAPHIC	AGE	רואס	NETRATION RATE				DESCRIPTION
1	2	3	4.	6	7	8	9			·	
6m of 152 casing	11 '		او و بالمعطيرة المعطيسات بيطيسات بيطيسات					1.5-			OUARTZ SAND. 0-0.5 dark brown, well rounded quartz. Grain avergae size 0.4 mm about 10-20%-organic matter and silt.0.5-1.5 orange, average grain size 0.2 mm. Angular - well rounded. Odd organic material. QUARTT STLT. Pale orange town. Average grain size 0.1-0.2 mm. Calcardes up to 20% clay. 3-4.5 some flint chips and pale gray brown cemented calcarenite fragments. 4.5-6 lighter colour and about 30% sand size grains. Odd small cemented calcarenite fragments.
70			en landantantantant					6 -	9		GALCARENITE. Pale brown buff. 6-7.5 average grain size 0.2-0.4 mm generally well rounded. Up to 10% silt. 7.5-9 average grain size 0.5-0.6 mm generally sub-angular some 3-4 mm strongly cemented calcarenite fragments. Odd bryozoa spicule?
			ق ق تسلسانسانسانینانینا					9 -	13.5		CALCISILTITE. Pale brown-buff. Average grain size 0.1 mm. About 10-20% sand size grains and large (1-2 cm) moderately well rounded calcareous sandstone fragments, 9-12. Up to 20% clay and 10-20% quartz, only a few large fragments. CALCISILTITE/CALCARENITE. Buff. About 40% sand
			سياستانساسيانسان					13.5	5-15		CALCARENITE. Buff-cream. Average grain size 0.3-0.5 mm. About 20% silt-clay. Odd calcareous sandstone chips (pale grey-white, up to 5-6 mm). Odd bryozoa fragment?

1 2 3 4 5 6 7 8 9	State No. 246066801 Bore Serial No. SHEET 2 OF 8
20 - 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	15-16.5 CALCISILTITE. Pale grey-brown. About 20% sand and up to 10-20% quartz and black flint chips and larger (1 cm) nodules of strongly cemented (siliceous) calcarenite. 16.5-21.5 SANDY CALCISILTITE. Off white-grey. 16.5-18 Flint fragments somewhat siliceous and odd shell fragments somewhat siliceous and odd shell fragments 18-20 somewhat clayey (pale grey-brown) and odd flint chip up to 1 cm. 20-21.5 somewhat clayey and odd bryozoa and flat chips. Some quite strongly cemented nodules of calcarenite. CLAYEV CALCISILTITE. Off white-cream. Few sand size grains, flint common. 23-24.5 bryozoa moderately common. 24-26-27.5 little flint. 27.5-29 flint moderately common. 24-27.5 little flint. 27.5-29 flint moderately common, about 30% clay somewhat sticky when wet. 29-30.5 few bryozoa and odd pale brown chert. 32-33.5 large flint fragments average size 5 mm and bryozoa fragments moderately common. 33.5-38 Pale grey/buff, flint and chert fragments very common (often 60%) size range 0.2-1cm (larger in 36.5-38). Very sharp and angular. Odd bryozoa and towards base somewhat rounded fragments of strongly cemented bryozoal calcarenite.

1	2	3	4	5	6	7	8	9	State No.	24	46066801	Bore Serial No		SHEET 3 OF	0
	Ţ <u>.</u>					1	1					DOTE SETTED PRO.	<u> </u>	STEEL J. OF	<u>0.</u>
									41-47.5		fossil frag coral tubes Few flint c	. Off white parents - bryozo somewhat oran hips. 42.5-4 re even grain	oa tubes a nge staine 6 finer gra	nd colonies, d (limonites	,
								. •			· .				
			,					٠.		÷		• • • • • • • • • • • • • • • • • • • •			
			-45					,							$, \dashv$
			والمديانية												1
			بالبينانيان						47.5-49		Essentially	. Off-white - fossils - br agments of re	yozoa, ech	inoid spines	;
			ուսեսու						49-101		nite. CALCARENITE Mixture of	. Off-white - sand size fos ery hard recr	pale brow sils and f	n. 49-50.5 ragments of	-
	•		-50					·			tised?) cal than 80% mo	carenite 50.5 stly bryozoa. llised calcar	-53.5 Foss Rest sma	ils more ller fragm <mark>e</mark> r	nts
			يبيانسينيا								53.5-61 Pal ments commo calcareous	e grey-brown. n, bryozoa md chips. Flint	oerately c	ommon - rest	t 1
			55—								rest fossil flint fragm	sed fragments and calcareo ents common - recrystallis	us chips. large fra	Chert and gments	1
		-	مساييمانيين										·		
			لسنطست		1			·				·			
			بىلىسلىسا												
			60-		1				•		•		٠.	1 :	
			utunluuti			,						ff-white fossi w recrystalli	•		
			بتماسسا									ff-white cream oes and fragme		.1y	1
			لسسا	F				.			64-67 Pa	ale grey-brown	n essential	lly :	
			65		=						bryozoa tul	bes with clayentain about 50	ey calcarer		\cdot

--

.

 		:		·	. ,				· .	
-	1.	2	3	. 4	5	6	7 1	3 9	}	State No. 246066801 Bore Serial No. SHEET 4 OF 8
١,	n 2.			4	μ_	T^{\perp}				
	; · ·			- 4	-	1				
				1	-	<u>, 1</u>				67-70 White, essentially fossil and chert
				1	1	1				fragments up to 1 cm (grey-brown)
				. 1	μ_	1				Odd orange stained quartz grain.
; f				1	ŀŕ	.! -				68.5 Much recrystallised material.
				1	#	- 4			٠	
			٠.	1	-	-				
				-70-		4				
				1	1					
				1			:			
				1	-	Щ				
									2	
	4 19 5 19) } }			11.5					
				1	L	التو				
			•		-				•	
		7:		1		$\perp \parallel$				
			İ	-75	-	L			. '	그들의 성도 이 경우 시간 그는 그는 사람이 있는 그는 것도 되는 수
					-	100			` .	Odd small recrystallised fragments.
		1. 1.1 1.1		سأستان	Π.	271		1		odd Small recrystallised fragments.
				لنييا					-	
				huntantan		$\perp \parallel$				
				4						
				major		\square				Fawn, average grain size 0.5 mm. Bryozoal
				عالما	-	Ц				and calcareous chips.
4				3					· ·	Odd larger recrystallised fragments becoming
				-80-	-	┸			-	paler.
	٠.:			1	-	H				
				1111	T					
				-	1	П	. .			
				atu afaartaachaan taan			4		-	
		1		4						Some orange stained chips.
				1	1					
				1	-	니				
.	ta e General			− 8 5	-	T^{H}			٠ .	
				1	上	-		1		
	• ;			سال				. '		
	·. ·			1		\prod				
;	٠			ينسباب	1	L_{L}				
	 	.:		1		7			1.	
					T	<u></u>				
					1	T^{\perp}				
				1	1-	1_				
! <u>[·</u>			<u> </u>	20				<u>L</u>		

1	2	3	4	5	6	1	7	В	9	State No.	246066801	Bore Serial No	SHEET 5 OF 8
			-										
						I							thon 1
			.95							·	Orange	verage grain size less staining of bryozoal anoderately common.	
						1					Strong	omongo staining Avo	maga grain
									• .		size 1	orange, staining. Ave mm.	rage grain .
			of confidence of the confidenc								Orange	some strongly cemented	nodules (2-3 cm)
			100-			Į				101-102	QUARTZO	ooth. Appears somewha SE CALCARENITE. Up to rd angular fragments o	30% quartz + .
										102-106.	Fawn-gr CALCARE brown f Off-whi Odd wel grain s	ey.	ning + dark red tle quartz. e staining.
			105-							106.5-11	grain s (recrys	ALCARENITE Off white- ize 0.1-0.2 mm. Some tallised) Clay fracti ze grains.	hard fragments
					+	 							
			-110							110-113	of sand	CALCISILTITE Pale grey l and clay plus hard fr	agments
-			1			H.						arge fragments of a faw	
			1							113-114.	of clay	LTITE Fawn-pale grey. plus some sand size gragment.	High proportion rains plus odd
			115		<u>+</u>	Ŧ			,	·			·

1	2	3	4	6	7 8	9	State No.	246066801 Bore Serial No
			- Tarker	+ +			114.5-116	SANDY CALCISITITE Pale grey. About 30% sand
			Amara				116-117.5	size. Significant clay fraction. SILTY CALCARENITE Pale grey. Some clay-
			واستط				117.5-123.5	Up to 5-10% well rounded quartz. CALCISILTITE/CALCILUTITE (MARL) Medium grey
No. of Concession, Name of	1							About 10% sand size, rest equal proportions Odd larger hard fragment. Some quite large very hard fine grained cemented fragments -
			مالديدا					angular.
			120_					Blue grey, some sand, fragments rare
			للسلسن					About 10% fine quartz sand. Medium grey, Very sticky.
	.		استل	<u></u>				
			عناسماست				123.5-125	CLAYEY CALCISILTITE Medium grey. About 20% sand size. Plastic
			يسلنا					
		-	125 111				125-126.5	SANDY CALCISILTITE Buff-pale grey. About 30-40% sand size (bryozoa etc.) Some clay.
			بينيا بميرنيينا				126.5-129.5	CALCARENTIE Buff-pale grey. Average grain size 0.6-1 mm. Essentially calcareous chips and bryozoa - Some well rounded quartz.
			بعين عيما بمناسياته فليتبل					
			بلىيىلىسى				129.5-131	SILTY CALCARENITE Average grain size 0.2-0.4 mm. Odd larger well rounded quartz (1½ mm)
			-130		1			- -
			اسطسياسه	1			131-134	CALCARENITE Average grain size 0.5-0.8 mm Buff. Essentially bryozoa fragments + chips. Some quartz.
			بلسيد		†			More silty and finer grained.
			بيرايد بيديا		4		134-139	CALCARENITE Coarse grained, Average grain
			135-					size 1.3-1.6 mm. Buff. Essentially calcareous chips and bryozoa. Some large (3 mm) fossils. Odd well rounded quartz grains.
1			1					
								· · · · · · · · · · · · · · · · · · ·
	:	:	1,11,1				139-140.5	CLAYEY SAND (grit) Black. Quartz grains 3.2-2.4 mm well rounded, some angular. In a
Ŀ		!	140	<u> ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>	1			

-	2	3 4	1	6	7	8	9	State No.	246066801 Bore Serial No. SHEET 7 OF 8
1		1	4			1			
	. -		1						black clay. Some calcareous material
	!	[.	4						Gives H2S in acid
١			4		1	١		140.5-145	CLAY Black, plastic. Odd sand-gravel size
			7			.			grain
			4		1	.	٠.		
		١.	-		1	١			Less than 5% well rounded quartz sand/gravel
			. 4			.	•		
	Ì	1.	1			٠			Brownish-black, tight, some silt.
		.	3						
.			1	===			;	145-146.5	CLAYEY GRAVEL Black. About 50-60% well
		-14	+	0 0					rounded quartz sand-gravel in a clay matrix
			1	-	1	İ			sulpherated.
	-		. =	, <u>~</u>				146.5-163	SAND Essentially quartz (more than 95%)
	:	1:	3	0 ,		۱.			Moderate to well rounded mostly clear, rest
	1	"	3						milky average 1.5 mm.
1			4		-	٠.			milky avoidgo 1.5 mm.
+	\dashv		4			.			Coarse sand to grit, up to 3.5 mm, grey,
1	1.	1	1			1			minor clay.
			4			į			
	.		-1	::::		.			Coarse sand pale grey
1	-		1						
			4	j.: · · ·					Sub rounded grains approx. 1 mm diameter
1	.	150	닠	::::		1		* .	minor fine sand fraction.
1			4	 			-		
1			4						Fine sand approx. 0.1-0.2 mm diameter, grey
			4	::::		ļ			60-70% sand, 30-40% black clay.
		1	111	::::					
!	- -	.	7]		·		Avenage angin gige 1 mm non calcanacus
		1	4						Average grain size 1 mm non calcareous.
ļ		.	4		1				H2S with acid.
İ			4]				00 000 angular ayarta 10 200 bi -i -i -i
-		1	1						80-90% angular quartz, 10-20% black clay.
	-		1		[]				Sand about 0.5 mm diameter.
	į.		4						
.	.	-15/	; <u>-</u> j		1 1		!		
		1.	4	:]				
ĺ		ĺ	4						
	-		4	. · · · ·	1				
			Ti d	· · · :			`		
			ᆌ	·	1			[
			4		1			f. 1	
-	ĺ	.	4	\.·.:	1			1	
		,	1	: : :					
			{{1}}				· .		
	ļ	.].		
1			1	$[\cdot]$ \cdots]		1		
	i	-14	0-	. · · · ·		1			
. [4		1				
1			-		:				
1			1						
	.								
	. }		7		1				
	Į		77	: : : :	1.	-	1	163-171	CLAY Black, plastic. Minor fine sand and
			_=	<u> </u>	-1	١.			silt fraction. Non calcareous.
			3		7	ĺ			Gives off H2S with acid.
	.	· ·	_	 	7				OTAGS OIT HEO WICH GOIG.
		-	-		Ţ		1.		
-		1.	ב בי		<u> </u>	-	1		
	4	- 1 -	- ره		1	Ι.	1		

	2	3	4	5 6	7 8	9		State No246066801		CHEET	8. of . 8	Q T
Ť	†	1	1		٩			bule send (40.	· · · · ·	JI ICE I	J. UF . (_
			_									
		1.				,	1		•			
												-
	'											
				<u> </u>								1
	}.				.							}
-		1										
			-170				-	End of Hole		•		\dashv
]
					,	: -				•		-
	-								,			
												1
					'							4
	1.											.
			-175						•		-	\dashv
,			1									
								·				
												1
			1				-					
												1
			-					•				\downarrow
'			160-		1							\exists
												╽
												1
	. -											
							,					$\frac{1}{1}$
Ì			.0=						•			
		1	-185						-			٦
		İ						·	•			1
		-										
			-									1
		-										
•			-						٠			
			-									\dashv
		:	190	*								

ć

2 3	4	5	6	7 8	9	State No.	24-6036501 Bore Serial No SHEET 2. OF 6.
2 3				/ 8	7	Sidie No.	246036501 Bore Serial No. SHEET 2 OF 6. 13.5-16.5 m. Buff-cream. Some large (2-3 cm) angular chert fragments (bands in ground). Very small flint chips.
	-20-	اسبيبينياسينيناسينيد			-		
	-	بايبياسيا بيبليساك ينلسنانسي				23 - 26	SANDY CALCISILTITE Buff. Some small flint fragments + chert + fragments of strongly cemented calcarenite/calcisiltite.
 6-8	-25-	بالبيداييما يبيانيين تينيا يتبادينا يبيانين	V + · · · · · · · · · · · · · · · · · ·			26 - 27 27 - 51.5	SILTY CALCARENITE Fragments of cream, strongly cemented calcarenite. Some chert. CALCARENITE Cream, average grain size O.5-1 mm. Calcareous chips + bryozoa tubules. Some brown chert fragments. Between 29-32 m. Cream - off white.
	-30-	حسبابه بدايستان مليبين					
	-	بسطسيك ساسيك ما					Some grey brown fine grained quartz sand. Pale grey brown. 1-2 mm fragments of black clay - silt.
	-35 -	بعفلايينيانيينانيينا				35 -36. 5	Somewhat finer grained, pale brown-grey. (0.5 mm)
	-	سيبلسيانسيانسا					Average grain size 0.8-1 mm. Some fine quartz. Again quartz (contamination from above.)
	-	سيناسيناسي				. ·	

. .

1 2	3 4 5 6 7 8 9		
	11 1 1 1 1 1 1 1	State No.	246036501 Bore Serial No. SHEET 3. OF 6
		42.5-47	Buff wide size range 0.2-1 mm. Some large bryozoa tubes (4 mm x 2 mm). Some strongly cemented fragments.
-			
	45-45-45-45-45-45-45-45-45-45-45-45-45-4		
		47-49	Off-white - buff. Some flint fragments
			(black).
		49-50	Fine grained - Average grain size 0.3-0.6 mm.
	50-1	50-51.5	Some clay + cemented fragments
		51.5-59	SILTY CALCARENITE Pale greenish - buff. Average grain size 0.1-0.4 mm. Glassy calcite + calcareous chips + bryozoa. Between 53-58 mm. Granular grains Buff - off white.
			greenish tinge. Between 58-59 mm. Orange. Hard cemented fragments, some quite perous.
	55 - 3 - 1 - 1		· · · · · · · · · · · · · · · · · · ·
	$\parallel \parallel = \frac{1}{2} \parallel + \parallel + \parallel \parallel \parallel \parallel$		
		59-61.5	CALCARENITE Buff-pale orange. Some dark orange staining. (Much quartz.)
			-
		61.5-64	CALCISILTITE Pale green-grey, nodules of hard, yellow quartzose calcarenite.
		64-65.5	SANDY CALCILUTITE Some sand size gra:

			•				•	
						ė		
1	2.	3	4	6 7	7 8	9		246036501 Bore Serial No. SHEET 4. OF 6.
							65.5-68.5	5 SILTY CALCARENITE Pale grey-green. 60-70% sand size. Harder nodule of cream - pale orange quartzose calcarent
•			ببياسييساسيساسيسا	Δ Δ - ψ -			68.5-71.5	Between 67-68.5. 80% sand size. Flint chips up to 1 cm. 5 CALCARENITE Buff - some clay. Some pale grey-green clay nodules. Some 5 mm nodules of quartzose calcarenite (hard). From 70-71.5 large amounts of flint and chert.
		-	المسلسلة بالسلسلة	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>				
٠ ,٠			ununtunt				71.5-73	SANDY CALCISILTITE Medium grey. Some non-calcareous clay.
			سلسسل				73-76	CALCARENITE Pale yellow brown. Average grain size 0.2-0.4 mm.
			75	Δ				Between 74.5-76.m. Browner. Chert chips 2-3 mm.
			بسلمستستل	▽			76 - 77•5	CALCICUTITE Silty, grey.
			سيلسيلسنا					
			80— 1000 —			-	79-81	CALCILUTITE Silty, grey with 10% fossiliferous calcarenite.
			ې لىسىسىلىسىلى				81-85.5	CALCILUTITE Silty, light grey with 75% fossiliferous calcarenite
•			uhunhun					
			# استاستا					
			85 		-		85.5-87	CALCARENITE Grey, with quartz grains (0.2-1 mm, subangular to subrounded) and minor glauconite.
	,		سيلسينيا				87-88.5	No Sample.
			سينسباسين				88.5-91.5	5 CALCISILTITE Dark brown, with quartz grains. (0.2-2.0 mm, subangular to subrounded).
١.		Ш	£0e			<u> </u>		

1 2	3	4	5 6	7 8	9	State No. 246036501 Bore Serial No
						91.5-94.5 CALCISILTITE Dark brown, quartz grains now 0.1 to 3 mm, subangular to sub-rounded.
-						
		-95 min				94.5-96 CALCILUTITE Silty. Quartz grains (0.2-3 mm, subangular to rounded) with corroded pyrite grains to 3 mm. Dark brown.
						96-97 CALCILUTITE Silty, dark brown. Quartz grains (0.2-5 mm, subangular to rounded, some cemented with pyrite giving fragments to 1 cm). 97-98.5 CLAY Dark brown, with 50% quartz grain (0.3-4.5 mm, subangular to rounded). CLAY Brown, with common fine mica flak and minor white calcareous blebs. 5% Arenite - quartz grains to 3 mm,
		5 8 	,			rounded, polished. Av. 1-2 mm Quartz fraction increases from 5% (85.5 m) to 50% (98.5 m) over this interval.
		-105	7			105-106.5 CLAY As above.
		1				106.5-108.5 ARENITE Round, polished quartz grains from silt size to 3 mm. 25% clay, brown.
108	<u> </u>		T.T. T.T. T.T. T.T.			108.5-113 As above. Clay 10-15%
		110-	T T T T T			•
		turkaturkatu	T. T.			ARENITE Quartz grains mostly 0.5-1 m Some 1-1.5 cm. All rounded, polished grains. Minor fawn clay.

As above, without fawn clay. T. T. T. T. T. T. T. T. T. T. T. T. T.			•		
122-125 As above, without fawn clay. Rare mica flakes to 1 mm in the 106.5-125 interval. 125-132.5 CLAY Black/brown, H25 apparent. Finely laminated (grey brown/dark black brown laminations). Fine mica flakes common. 50% Arenite - rounded, polished quartz from silt size to 3-4 mm.	1 2	3 4 5 6	7 8 9	State No. 246036501 Bore Serial No. SHEET 6	OF .6
black brown laminations). Fine mica flakes common. 50% Arenite - rounded, polished quartz from silt size to 3-4 mm.		20 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7 8 9	As above, without fawn clay. Rare mica flakes to 1 mm in the 106.5-125 interval. 125-132.5 CLAY Black/brown, H25 apparent.	
132.5 END OF HOLE.		130		Finely laminated (grey brown/daminated (grey brown/daminated). Fine black brown laminations). Fine mica flakes common. 50% Arenite rounded, polished quartz from si	e –
-135—1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				132.5 END OF HOLE.	
		135			,

. .

14 - 16m

30%.

•	. •						
1 2	3 4	5 6 7 8 9	State	No. 246021903	Bore Ser	ial No. 111/73	SHEET 2. OF 3
					-	ite 10%	
					•		
18				18 -22m	, 11	5%	
	-20-	NE NE					
		2)CEA	·				
:		rim rim		22 - 27m	11	10-20% Marl	٧
		160- 160-		·•		,	,
		go or	·	·			
	- Indu						
	25						_
			27-28m	SILTY MADL. 20-15% calc	Mid b	rown, minor l	olack clay
	- Infinite			Minor quart	z areni	te, clear, lo 0.2mm), subs	ess than angular to
				subrounded.	•	n-black grain	
	30-		28-40m	calcareous, CLAY, Dark	subrou	nded - roundelack, silty,	ed, 0.2-2.5
	- all	hole)				artz arenite	
		d of		subangular	to subr		
		16 27		quartz grai	ns in g	nented fragmen grey-green ? p ne calcareous	glauconite
		FNE		30-34m. 30	-40% gu	ertz arenite	, less than
		A FOOT		coloured gr	ains.	Part tooth in	n 30-32m
	35-	Per		grains in 3	rox. 20	% quartz are	nite as
		the		? glauconit	e encru		· -
				grains to 1		vith rare opa	dae daares
					. ,		
				·			
	40						•

		1	 	 	! -	
1 :	2 3	4	5 6 7	8 9	State N	to. 2.46()219()3 Bore Serial No. 111/73 SHEET 3. OF 3
					40-48m	38-40m. Less than 5% quartz arenite from less than 0.1 to 3.0mm. CLAY Grey-brown, slightly silty, sticky. Trace quartz arenite at 40m. decreasing to absence at 48m. 40-44m Trace? pyrite and? glauconite.
		-45				
		-50			48-52m	CLAY Grey-brown with minor cream mottling sticky. Rare quartz grains to 6mm. (Av. 1.5mm) 48-50m Minor lignite.
					52-58m	CLAY Dark grey, dark brown mottling, sticky. Less than 5% quartz arenite to 6mm. (Av.1.5mm) 52-54m Minor? pyrite and? glauconite. 56-58m Trace? glauconite
		-55			58-64m	CLAY, Dark grey with minor brown and cream mottling and rare quartz grains.
		-60-				
		65			E	ND OF HOLE 64m.

1 2 3	4	5 6	7 8	9	State No.	246018301	Bore Se	rial No	113/73	SHEET 2 OF 3
		T T T T					DOTE 30	TIGH NO.	¥10/70	SHEET 2 OF 3
9	-10 min				19 - 21m 21 - 23	frag grai Mino	ns. Rare l or silt.	mm, wit	th yellow I fragment	and rare pink
	باسيساسياسيا				23 - 25	m CALC calc frag	CARENITE - New reasons from the contract of grey	MARL. Wyments w	White and with commo	yellow n bryozoal
24:35	-25		STONE		25 - 27	bryo	CISILTITE. DZOAl fragments t fragments	ents. l	Jp to 20%	angular —
	بيباساسيلسا	DT D	ENE MIC ER LIME		27 - 37	to 5	mm with magareous frag	inor whi gments t	ite and re	
	-30		07/600			Fron	n 27 - 35	_	ular flint rown) to 5	•
	ևուկուսեուկու	T A					•			
	-35	A Wh			÷	From	n 35 - 37	30% Flii	nt fragmen	ts
	արարար	T 7			37 - 39	to :	mm. Minogments. Gr	r silt, ey.	marl and	fragments angular flint
	40	Δ /JE.			39 - 43	frag	CISILTITE. gments to 2 - 41 Offwh	mm.	WICH ZUS	01y020a1

		.•		·	
1 2	3 4	5 6	7 8 9	State No.	. 246018301 Bore Serial No 113/73 . SHEET 3 OF 3 .
				43 - 45 m	shell fragments and bryozoal fragments. Minor subangular to angular quartz grains to
	-45	7/3	mation	45 - 47 m	0.5 mm. Minor black grains to 1-2 mm. White and yellow calcareous grains.
			Knight For	47 m END.	
	-50-milionilani				
	-55				
	40				
	h.mandunh				•
	- I				

1 2 3	4 5 6 7	B 9 State No. 286015201 Bore Serial No. 106/72 SHEST 2 GE 10
	20	0 - 25.9 m As above
	25 THE TOTAL	25.9 - 27.4 m Calcindite (calcarenite) - mixture of bryozoal fragments (to 2 mm) and hard secondary dolomite (orange) - shell fragments (to
	30 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	5 mm).
	35	27.4 - 42.7 m Arenaceous Calcilutite - offwhite in colour - varying proportions of sand sized fraction. Bryozoal, echinoid spine fragments. Variable proportions of flint fragments. Minor iron staining Sand fraction varies from 10-40% with grain size approx. 0.1 mm diam.

					1	* . *!))							i			• •					
Γ	1 7	2 3	4	5 6 7	8	9		State	No286	045	201	7	Pa	a Cast	al No.		06/	72			,	- 40
	`		40			-		,	102.00	<u>V.) ().</u>	<u> </u>		bor	e Serio	1 No.		UDZ.		SHE) OI	F .10
.												٠.		•		•	•••			:	•	
	1						27.4	-/	42.7	m	As	abo	ve		4	•			į ·			. †
			1	松三				, t	• "				· 7.									
			1					:							٠. ٔ							
			. 4						•								٠.		,			ļ
			1												٠.			•				
			1					٠.						· .								
-			45_			.		t :			٠											
			47-	1			•		1													
1			4									ė		:								,
			7			. }	1 .						,				į					. 1
		11	1				. !	•									•					``
			3			-		•	' .			٠		• • •	• .							. 1
			4]
	!		4		'				•	:			1		٠.							
l		$\left[, \right]$						*	•			•	,			•						4
ı			50			-	٠		•				,									
1			50			1	• • •		. •				,	••	-							-
			4	1761		}	•	:	<i>!</i> .		,	2 2										1
-	.		7			ĺ			<i>i</i> .		,				\							1
	İ		1			İ		٠, ٠		٠.						•						j
		1		顶		٠.	42.7		65.5	m	Lut	i.ti	c (Cal	car	eni	te -	- 1:	ight	gr	ey	1
			1	1/5-1		- 1								_	-	$-c \wedge c$)/	. ๆ				
-			. 1			.					nun	ero	us fii	nr; int:	yoz	Cal Cal	rili	agme HH	ents.	ارد فد ر	c+:	ion
	ļ		4			İ					var	riab	le	•	•	O (I .L)		(() <u></u> (ents.			10:1
1			4		.				•		-						•		,			1
-		1 }	55_	T G		1	٠,		•													긕
1			4					٠.			×.		•	,								l
l	ľ		1	14		.		,														1
ŀ			سا			1			•				:							•]
ļ	-		4	स्य																		•]
- [:			-4	下//二																		1
			- 4	THI.		j	· ;		. ; '							•						i
-		1 1	-			1	* / ·	.* -	• •								•					- 1
	ļ		<u> </u>	三司		.	1				•					·	-		•			.
			60_				: !	i, i	454 1114		!	:		•	• •	*				•		-
:			4				. š	. :								٠.	٠			٠.	•	
		1	T T		'	`												٠.				1
			سالا	記				: :					:									j
	1.		4					.,				•			t]
			1	岸			٠.										· ,•					
			1			1			•										•		•	
			4				•	N.										· .				$\left\{ \right.$
			65	片片						•												
			~~~	<del></del>	بلب	المبيي																

 $L^{\frac{1}{2}}$ 

	2.	3 4	5 6 7	B 9 State No. 286015201 Bare Serial No. 106/72 SHEET 4 OF 10
		65		42.7 - 65.5 m As above
1 .				
1		1		
• •			UB	
		1		
		1		
		1		
		70		65.5 - 76.2 m Arenaceous Calcilutite - mid grey
	.		- Y	in colour. Similar lithology to
<u> </u>		1		27.4 - 42.7 m samples but with a larger percentage of flint
		]		fragments (up to 80%)
ł				
			17-5	
'		"		
1		1		
		75_		
		4		
1		4		
		1 . 4		
		4		
}		1	1/2	
Ì		1	/ <del>/</del> =	
1		1		
	.	1	197	
		80		
}				
		1	4	76.2 -115.8 m Bryozoal Calcarenite - offwhite to
1		1	2	buff in colour - Dominantly
				calcarenite sized particles (<2 mm
		4	[4]	diam) with numerous bryozoal fragments. Varying proportions
		4		of calcilutitic material - samples
		4		with greater calculatite fraction
			39	appear darker grey in colour.  Most samples contain up to 20%
		85		calcisiltite fraction. Degree of
;		02		induration also varies from
		1	W	sample to sample.
ļ		1		
1		1 1	<b></b>	
.			以王	
		-	177	
	.	4		
L		90	│ <del>│</del>	

								\$ 10 mm								Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor Ta			)·	. :			.;;
	<del> </del>	2	3 4	5	6	7 8	9	<b> </b>	State I	No. 2	<u> からい</u>	1550,	1	Bore	Serial N	<u>. 1</u>	06/	<u>7.2                                    </u>		SHEET	5	of1.0.	
•		,	90	Lunimalian land																			
			95	بسيسياسين بتباسيتها							***						がは、大きななどので						
	10 m		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	سيسلسيليسيان بيسا																			
			100	سيساساسساس			· · · · · · · · · · · · · · · · · · ·	76.	2	115	8 m	As	s <b>a</b> l	ove		10年の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の		から はない はない					
, , , , , , , , , , , , , , , , , , , ,		· .	10	5																		. • : : •	
				بالبريخ بيبيا يتيمل يتمايي																			
			110	عيساسمين كاستيساس												· · · · · · · · · · · · · · · · · · ·	¥		ing service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the se			_	
			¥.	mulanden de manden de																			

1	2	3 4	5 6 7	8 9	Sta	nte No. 2860157	201 Bore Serial No. 106/72 SHEET 6 OF 10
		115			<del></del>	- 115.8 m	
				•			
					<i>y</i> .		
					• •		
	} }						
				ŀ			
		120				·	
					115.8	- 128.0 m	Bryozoal Calcilutite - light to
İ		4					mid grey in colour. 30%
•		1					bryozoel fragments plus dark grey flint fragments from 2-5 mm
		1			•		diam. Some evidence of iron
ļ		1 1				•	staining. Varying degrees of induration. No flint in the
		1 1		ľ		<b>.</b> 1.	last 4.5 m
			則				
		1 1			•		
		125	三万			•	-
		1				i.	
		1					
		1					
	.	1					
		1 4					
		1	77			•	
		'4					
		130			:		
á							
		المال				!	
		1	1-101		128.0	- 144.8 m	
		4		-			colour. Large proportion of bryozoal fragments. Minor
		1		• •		*, .	calcilutite fraction. Grain
		1		-			size of arenite fraction 0.2 -
		1	<u>-</u> -7/4				0.3 mm. Minor flint fragments.
			771				
1		135_	72				
						÷	
	.	1				•	
				1			
		"			1	·	
1			区(二)				•
					`		
		-	A-1			•	·
		140					

:

	<del>, ,</del>	<del></del>	<del>11 • •</del>	<del>                                      </del>
	2	3 4 140	5 6	7 8 9 State No. 286015201 Bore Serial No. 106/72 SHEET 7 OF 10
1		-		
				128.0 - 144.8 m As above
}		-		1 120.0 - 1. III AL above
			1-17	
ļ			₩,⊐	
		145		_
	-			
			7 7	
		1	Z.	
	1	1	ZZ	
		1		
* .		1 4	77	
		150		
		130		
		1		144.8 - 181.4 m Calcarenite - buff to pink in
	1	1		colour. Large angular fragments
		1		of well indurated limestone.
		1		No bryozoal fragments. Grain size ≈ 0.3 mm. Dolomitic - a
			ZZ	number of samples show a small .
`		1		red - pink nucleus enclosed by
	.	1 1		off white dolomite (g.s. approx. 0.5 mm diam) Flint absent.
		155		From 157.5 m - 168 m - no
			Z	dolomitisation sample offwhite -
		1		in colour - calcarenite grains approx. 0.5 mm dism. large
		drund	<del>, '</del>	fraction of calcite rhods
		I		approx. 0.3 - 0.5 mm diam.
		1	77	
		1		
		1		
		1		
		160		
		1		
		4		
		1		
		1	1	
		1	<b></b>	
.		4		
[		165	<del>ॗॗॗॗॗॗॗॗॗॗ</del> ॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗ	

1 2	3 4	5 6 7	8 9	State	No. 286 <b>0</b> 1520	1 Bore Serial No. 106/72 SHEET 8 OF 10
	165	, <b>9</b> , ,	8 9	Side	No. 20001720	Bore Serial No. 109772 SHEET O OF TO
	170	HHHH		1/1/ Ω	- 181.4 m	As phoyo
	175 <u>175</u>			144.0	- (O)•4 m	As above.
	1880					
	, ,				•	Silty calcarenite - off-white to pink in colour. Finer grained than above. Grain-a size C.2-0.5 mm. Dolomite 10-20%. Silt fraction 40%.  Arenaceous Calcisiltite - pale
	185			,	- 195.1 m	grey in colour. Sand Traction 20-30%, dolomitic. Bryozoal fragments and calcite chips. Some grey-green flint.  Silty Calcarenite - pale grey in
	190					colour. Filt 30-40% - bryozoal fragments and calcite chips & minor flint.

2 3 4 5 6 7	8 9	State No. 2860152	PO1 Bore Serial No. 106/72 SHEET 9 OF 10
190 P		185.9 - 195.1 m	As above.
195		195.1 - 198.1 m	Calcisitite - grey in colour About 10-20% sand size fraction. Bryozoa with cemented fragments of same. Flint.
200		198.1 - 204.2 m	Silty Calcisitite - grey in colour. Some sand sized grains. Bryozoal fragments up to 1 mm diam. Some well indurated fragments.
205 + 1 + 1 205 + 1 + 1 201 + 1			Arenaceous Calcisiltite - sand fraction 20-30%. Bryozoal frag-ments to 1 mm. Calcilutite fraction. Minor flint and calcite chips 0.5-1 mm diam.
		l .	
210 = 1		210.8 - 216.4 m	Silty Calculatite - grey in colour. Bilt and sand sized fraction 10%. Bryozoal fragments
			up to 0.4 mm.
215			

:

				· · .		: :		
		·						
1 2	3 4	5 6 7 8	9	State No.	286015201	Bore Serial No.	1.06/72	SHEET 10 OF 10
	215			•				
			21/	5.4	225 6 m Aro	magagus C	olo:o:l+:+c	
	220		210	)•4 —	cni sil	p bryozoal ps, flint	fragments. Cemented	, calcite l calci-
								-
	225				225.6 m E	ND OF HOL	E	
	,   	T DI				λ ,		
	230			<b>√</b>				_
								_
						į		

# DEPARTMENT OF MINES SOUTH AUSTRALIA

# HYDROGEOLOGY, SECTION

# **BORE LOG**

HIRER DEPT. OF MINES.

DEPTH

Drill type Cable Tool

A.M.G. Zone Logged byM.A. COBB Coords. E

Circulation Water

Driller L.A. Hausler Dote logged 31.5.72

Start 11.2.72 Finish 3.5.72

Bore Diameter

300m

Datum Elev. (m) Ref. Pt. Elev.

HUNDRED CAROLINE

SECTION 636

STATE No. 286063602 Project No.M. G. 6 (CAR 10)

Docket No. 224/1/69 Bore Serial No. 231/60

			Surface Elev.	Bore Serial No. 231/69					
Depth 10	Depth to		SUPPLY	TOTAL DISSOLV					
Water cut (m)	standing water (m)	litres/sec.	Method of lest	Milligrammes/litre	Analysis W. No.				
3	1.60			See summary	sheets.				
<u> </u>			•						

Mt. Gambier test area Stratigraphic Bore M.C. 6 (Observation Bore CAR 10).

CASING	WATERS CUT	WATER LEVEL	DEPTH (m)	CORE	100	AGE	TINO	DEPTH from	(m) 10	DESCRIPTION
			2 2					0 - 0.25- 0.5 - 7 - 11 - 12 -	6 7 11	etc. QUARTZ SAND. Black, organic.

PF Nº S10537 MH

Bore Folder No.

Date:

1		5	<u>ش</u>	<u></u>	П	-		1		DE	DADTA	MENT OF MAINIES. SOUTH AUSTRALIA
	CASING	SS O	R LEV	т (ш)	ORE	GRAPHIC	5	Ę		DE	PAKIM	MENT OF MINES — SOUTH AUSTRALIA
	. ₹	WATERS	WATER LE	<b>2</b> DEPTH	۲	<u>₹</u> 3	∢	ž	fro	DEPTH m	(m) to	DESCRIPTION
				Jamparlen			- 1		15	<b>-</b> . 1	17	SANDY CALCISILTITE. Medium grey. 30-40% sand size grains.
									17	<b>-</b> 2	20	SILTY CALCARENITE. Medium dark grey. About 30% silt size. Flint moderately common.
				20 -	mryh wran	45224		2	20	<b>-</b> 2	23	SILTY CALCARENITE/FLINT. As above but flint fragments make from 50 - 90% of samples (up to 8 cm in size).
				باستاستا	SHOL	Y V. V-4 A P						
				25	NH TH THY				23	- 2	27	CALCARENITE. Off white, coarse grained (average 0.8 - 1mm). Flint about 5% of samples. Dominantly bryozoal fragments and calcite chips. Between 26 - 27m very hard lithology - drilling gives rudite, size hard fragments. Calcite rhombs common. Flint common.
	-			يباييناسات أسان	HUNKH	Y I	.	2	27	<b>-</b> 3	50	FLINT/SILTY CALCARENITE. Medium - dark grey. Again flint makes up most of sample (up to 90%). Rest a silty calcarenite.
				30	HAHKHKH	24 5 2 2 4 D			5 <b>O</b>	- 3	5 <i>1</i> 4	FLINT/CALCARENITE. Off white. About 80% of samples flint chips. Rest bry-ozoa, coral fragments plus echinoid - spines. Near base silicified calcarenite/siltite fragments common.
	•				HWFKHIST	4575			34	- 7	6	SANDY CALCISITITE/FLINT. Medium grey. Flint decreases from about 70% to 30% of samples.
				35-1	HOH	± ± ± q.			36	- 3	57	SILTY CALCARENITE/FLINT. Pale - medium grey 10 - 20% silt. Chert/flint 50%
				علىبيلىسلىسلىسا	T FI CV III				<b>57</b>	- 4	ю	of samples. Rest bryozoal etc.  SANDY CALCISILTITE. Pale-medium grey.  About 30% sand size, rest silt and clay size (sticky when wet).  Some Flint Chips. Sand content incresses with depth.
				ساسيينسياسياسي								
				3oreho	le	Stat	e I	No.	28	3606	360	)2
Į	<u>.                                    </u>										· .	Date: Bore Folder No. 35

CASING TERS CUT	1 (m) H	GRAPHIC	AGE	1 '	ARTMEN'	T OF MINES - SOUTH AUSTRALIA
CAS VATER	WATER LEVES	G R A	¥   5	DEPTH (r from	n). to	DESCRIPTION
	randarda sharta sharta			40 - 4 41 - 4 42 - 4	2	CALCARENITE. Medium grey. About 10% silt. Rest bryozoa and calcareous chips. Flint chips small. FLINT/SANDY CALCASILTITE. Medium grey. Flint about 70% of sample. CALCISILTITE. Medium grey, sticky, (moderate clay content). Little sand or flint. Between 44 - 45m sand content about 10%.
	45-			46 <b>-</b> 4 47 <b>-</b> 5		CALCISILTITE/CALCARENITE. Pale-medium grey. About equal proportions sand and silt sizes. Some flint.  SANDY CALCISILTITE. Pale-medium grey.  Some flint. About 50% sand size.  Dominently calcareous chips and bryozoal fragments.
	50-1					
	55			5 <b>5 –</b> 5 56 <b>–</b> 5		SILTY CALCARENITE. Pale grey. About 30% silt and clay. Flint chips common. FLINT/CALCARENITE. Pale grey. Flint up to 80% of sample. Rest bryozoal fragments and calcareous chips. Some silt.
		18 18 18 18 18 18 18 18 18 18 18 18 18 1		58 <b>-</b> 6		CALCARENTTE. Off white. Characterised by very hard cemented bryozoal and spicules etc. Some orange staining of fragments. Some quartz grains. Flint. Moderately common. CALCARENTTE. White-cream. Dominantly loose bryozoal but some hard cemented fragments indicating hard bars. Average grain size 0.2-0.5mm. Flint about 30%
	8	A 19 11 2 1 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4		6 <b>4 -</b> 6	6	of sample.  FLINT. Flint fragments occupy nearly all of sample. Some calcarenite grains plus silt
	65 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 1801 de la 18	le State	, N	<u>.</u> 28606	3602	Drn: Sheel 3 of 13
L		3.576	. , , ,	- ·		Dale: Bore Folder No. 35

S CUI LEVEL	6 PH 10	l .	NT OF MINES SOUTH AUSTRALIA
WATERS CONTRIBUTED WATER LEV	CORE CRAPHIC LOG AGE UNIT	DEPTH (m) from. to	/ DESCRIPTION
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	66 - 70	CALCARENITE. Off white. Samples characterised by very hard well cemeted fragments - extremely hard layers in situ. Flint moderately common.
70		70 <b>-</b> 72	CALCARENITE. White-cream, clean. Even grained average grain size 0.4-0.5 (bryozoal and calcareous chips, odd
		72 - 74	one orange stained). Some flint chips. SANDY CALCISILTITE. Fale grey. About 40% sand size. Some flint.
		74 - 76	CALCISILTITE. Pale grey. Odd send size grain.
75	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	76 - 78	SAMBY CALCISILTITE. Sand grains. About 40% of sample.
	# # # # # # # # # # # # # # # # # # #	78 - 80	CALCARENITE. Cream, clean. Average grain size 0.5 - 0.8 mm. Chert and flint chips common.
		30 <b>-</b> 82	SANDY CALCISILTITE. Pale-medium grey.  About 30% sand size grains. Dominantly bryozoal fragments etc.
80		82 - 98	CALCARENTIE. Cream. Average grain size range 0.2-0.5mm. Between 84 - 86 colcarcous chips dominant not bryozoal fragments. Some orange staining and ironstone fragments (around 89m and 95 Between 86 - 88m some chalcopyrite grains. Hard, recrystallised layers between 90 - 92m and 94 - 96m.
85			
			•• • •
90		20505	
Boreh	ole State N	28606360 •	

	DEPARTM	ENT OF MINES - SOUTH AUSTRALIA
CASING WATERS CUT WATER LEVEL WATER LEVEL CORF GRAPHIC LOG AGE UNIT	DEPTH (m) from 10	DESCRIPTION
95	from 10	DESCRIPTION
	96 - 100 100 -102 102-104	About 20% sand size, buff to white (bryozoa plus harder fragments).  SANDY CALCISILTITE. Fale grey. Dominantly calcareous chips and bryozoal fragments. A clay size fraction.  CLAYEY CALCAPENITE. Medium - dark grey.  Bryozoal and calcareous chips plus flinifragments.
		SANDY CALCUSTITITE. Pale grey. Small to address sand size fraction. Edner flint chips. Silt content increases with depth.
	110-114	CALCARENITE. Offwhite - pale groy. About CO, bryozoal fragments. Jumcrous small flint chips. Small clay fraction. Grain wize decreases with depth.
Borehole State No.	<u></u>	Don: Sheet 5 of 13  Date: Bore Folder No. 355

٥	CUT	LEVEL	(E)	μ ψ			MENT OF MINES — SOUTH AUSTRALIA
CASiNG	WATERS CUT	WATER	DEPTH	GRAPHIC LOG	AGE	DEPTH (m) from to	DESCRIPTION
			120	+4+4+4+4		114–118 / 118–134	SILTY CALCARENITE. Buff-pale grey.  Moderate silt size fraction. Small/ flint chips common.  CALCARENITE. Off white-buff. Clean.  Dominantly bryozoal fragments.  Numerous small flint fragments at top but soon disappears with depth. Clay content moderate between 120-124m.
			125				Between 124-128m average grain size 0.5mm. Bryozoal content decreasing.
			130			134–138	Between 128-134m grain size averages 1.0-2mm. Some pinkish coral fragments. Bryozoal content increases to 40-50% near base.  CALCARENITE. Large fragments (to 0.5cm)
		-					of hard cemented calcarenite - A hard band in situ.
			135			138-142	SANDY CALCILUTITE. Cream with a greenis tinge. Clay size fraction about 80%. Rest silt and sand size, amount increasing with depth.
			440 Boreh	ole Stat		  286065	502   Drn:   Sheel 6 of 13
			ooreno	JIE 3101	e N	,	Dole: Bore folder No. 351

Z C C L LEVEL 1 LEVEL (m) (m) HIC	DEPARTM	IENT OF MINES — SOUTH AUSTRALIA
WATERS CUING DEPTH (m) CORE GRAPHIC LOG	DEPTH (m)	DESCRIPTION
	142-144	CLAYEY CALCARENITE. Cream with greenish tinge. Sand size fraction 60-70%.
45	144–150	CALCARENITE. Average grain size 1mm but grain size decreases with depth. About 10% silt/clay size fraction.
150	150–154	CLAYEY CALCARENITE. Sand size average grain size 0.3 - 1mm. Dominantly calcereous chips. Up to 30% clay size fraction.
155	154-178	calcarente. Dominantly calcareous chinand bryozoal fragments. Up to 10% clay/silt size fraction. Grain size increases with depth up to 1-2mm.
160-		
		•
Borehole State N	<u> </u>	285063602 Drn: Sheet 7 of 13

(a) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	<u></u> <u></u>		SENT OF MINES - SOUTH AUSTRALIA	
CASING WATERS CUT WATER LEVE	GRAPHIC LOG AGE	DEPTH (m)	DESCRIPTION	
70		1		
175				
111111111111111111111111111111111111111		178–180	QUARTZ SAND. 80% quartz	sand, pinkish
80		180-186	in colour with an average 0.2mm. Rest clay, greeni calcarenite (inc. bryozoa SANDY CALCISILTITE. Fale - small to moderate clay/ No flint. Up to 10% pink quartz grains. Dominantl fragments.	sh coloured l fragments). grey, plastic sand fraction. ish angular
185				•
	- 40 C	186-192	CALCARENITE. Grading fro calcirudite near the top calcarenite. Off white-b bryozoal fragments plus s	down to a buff. Entirely
, Boreho	ole State N	2 <b>8</b> 60636	)2 , Drn: / Date:	Sheet 8 of 13 Bore Folder No. 351-

<u>5</u>	CUT.	15751	Ê	ıı Ş				MENT OF MINES SOUTH AUSTRALIA
CASING	WATERS CUI	WATER	HE 30∃			NS ENS	DEPTH (m) from to	DESCRIPTION
			130	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0		1,	
			v Sudandani				192-196	SANDY CALCILUTITE. Grey. Small to moderate silt/sand size fractions dominantly bryozoal fragments.
			اسبئيطيسك	HISTORY	A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A SECTION AND A			· · · · · · · · · · · · · · · · · · ·
			195 				196 <b>–</b> 200	CALCARENITE. Off white-buff. Average grain size 0.5-1mm. Dominantly bryozoal fragments.
			mil min					
				A P			200 <b>–</b> 202	CALCISILTITE. Fale grey. Rounded silty material and bryozoal fragments bound by a clay fraction.
 \$27\			200	¥ Ŷ		**	<b>2</b> 02 <b>–</b> 204	CLACARENITE. Pale grey. Large frag- ments of bryozoal up to 2mm about 80% of sample. Rest a grey coloured clay.
				1			204–246	SANDY CALCISILTITE. Crey coloured, plastic, with high silt fraction together with clay and minor sand fraction (calcareous chips and bryozoal fragments).
			205	五里王王二			A	
				四里山西				
			lean landan elan	田田里			, !	
			210-	A.H.H.H.H.				
			ituatantant	10年11年				•
			in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	THILLIP				
- !			Boreh	ole	State	No	,286063602	Drn: Sheet 9 of 13.  Date: Bare Folder No. 35

_	٦	51	Ĩ,	~	П	<i>/</i> **	П		DEPARTMENT OF MINES — SOUTH AUSTRALIA
CASING	.	WATERS CUT	۳ آد	(m) H1430 55		GRAPHIC 10G	<b>V</b> GE	Ē	DEFARIMENT OF MINES — SOUTH AUSTRALIA
.  5	1	¥¥1	WATE	DEPT	٢	5 3		5	DEPTH (m) DESCRIPTION
	7	1		215	1	里			
					5				
		-		) utuu					
ı	1			· Thir		毕		!	
	١	ı							
			ı	direc		量	.		어디에서 나는 그는 사람들은 사람들이 가입니다.
		l		220					
	. [			220- -					
. ] .	1				3	這			
1					1	誓	.		
				1111		<b> ₹</b>	2		
				luni.		业			
					土王	=			
,				-	H	量			
				, - <del>-</del> -	<b>=</b>	==		•	
			4	225	H	畫		٠	
y y				1		涅			
	Ì			11	1	= 1			
				Juni	Ŧ	<u> </u>			
				List.	=	1=		ł	
				1	E				
					=	主			
			12	30	百	-T-			
					1	2			
				4	<u> </u>	<u>_</u>			
1				7 T		耳			
				11		d			
1				1111	<b>F</b> {	泪			
		$\cdot$							
				235					
				1		컼	1		
				Janet.		臣		-	
				alu		呈			
				anton	Juli	7			
				ևունե		<b>2</b>			
				Lun		里			And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
				a de ca					
-			_ <u>_</u>	240	ا ماد			No	286063602 Drn: Sheet 10 of 13
·L	۰. م		ď	oreh	oie	Stat		10	2000 3002 Bore Folder No. 35

246-298  SANDY CALCILUTITE. Clay fraction about 70%. Medium grey becoming darker with depth. Remainder made up to sand and silt size fractions (colcrecus chips and bryozoal fragments).  Some bands of harder (well indurated) calcisiltite chips (chert).	(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		DEPARTMENT OF MINES - SOUTH AUSTRALIA
246-298  SANDY CALCILUTITE. Clay fraction about 70%. Medium grey becoming darker with depth. Remainder made up to sand and silt size fractions (colcrecus chips and bryozoal fragments).  Some bands of harder (well indurated) calcisiltite chips (chert).	CASIF WATERS WATER COR COR COR LOC	Ñ S	
265 Sheet 11 of 13	CASIN THE TENTE THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTA		DESCRIPTION  DESCRIPTION  DESCRIPTION  246-298  SANDY CALCILUTITE. Clay fraction about 70%. Medium grey becoming darker with depth. Remainder made up to sand and silt size fractions (calcareous chips and bryozoal fragments).  Some bands of harder (well indurated)
265 Share 11 of 13			
10cc 1 Sheet 11 of 13			
Borehole State No. 286063602	Borehole State	No	Drn: Sheet 11 of 13

ò	5	LEVEL	(E)	ñ		DEPARTA	MENT OF M	INES — SOUTH A	USTRALIA		
CAS:NG	WATERS	WATER LEVEL	(E) H1 430 265	GRAPHIC LOG	NOIT	DEPTH (m)			DESCRIPTION	į.	·
			-~								
			1111111	開							.
			للسله	到				S			
			1			; 1	ļ ,				. [
	,		270			· · ·					
								. •		• .	Ì
<u> </u>			en elem				·		; ;;		Ì
,			41111			. •					
				閆							
							, ·	7 A A			
			275	1				İ	✓		
		2	i. milli	酮				•		<b></b>	
			uttuiril								
		•	111111111111111111111111111111111111111								·
				薑							
			dani	調		,				#. N	:
			280	富			*			•	
			anlan		-	- · .					
										***	
			-1	喜							
			بمنسيا		1						
			285			1					. •
			263								
				101				· . · · · · · · · · · · · · · · · · · ·			
			سلست	囍						in the second	
			سملسا								
		_	, 1								
			290	鬥					1		13
1			Boreho	le State			63602	•	Drn;	Sheel 12 of	74 "

Ü	S CUT	16761		U I O	<u></u>		LENT OF MINES - SOUTH AUSTRAL	iA		ng de
CASING	WATER	AA ER	290	GRAPHIC	A O.E	DEPIH (m)	<b>DE</b> S	CRIPTION		
			295			298-300	CLAY. Dark grey small (about 1mm)	- green,	sticky.	Some
			300				END OF HOLE 300m.	cark mat	cerial.	
			Juni							
			l l							
										- 1
			-							
			1							
			111							
		,	111111111111111111111111111111111111111	J. Carl				- -		
			السب	·	.			•		
			1							
			ا بسابنينا							:
-			L <u>1</u>	<u> </u>	Ц	<u> </u>		Drn:	Sheet 1301	13
			boreho	ole Sta	ie N	<b>o</b> .	286063602	Dote	·	35 -

#### DEPARTMENT OF MINES SOUTH AUSTRALIA

#### HYDROGEOLOGY SECTION

# **BORE LOG**

DEPT. OF MINES

Drill typeCable Tool

A.M.G. Zone

Circulation Water

Logged by J.D. WATERMOUSE Date logged Feb. 1973

Driller L. Hausler Stary 4.5.72

Finish 6.10.72

Bore Diameter

Datum Elev.

DEPTH 298m. (m) Ref. Pt. Elev. Surface Elev. HUNDRED CAROLINE SECTION 310 STATE No. 286031001 Project No CAR 11

Docket No. 224/1/69 Bore Serial No. 142/72

					142/12	
Depth to	Depth to		SUPPLY	TOTAL DISSOLVED SOLIDS		
Water cut (m)	standing water (m)	litres/sec:	Method of lest	Milligrammes/litre	Analysis W. No.	
-	SEE ATTAC	HED SHEET.				
			· ·			
•			. ,	١:	, ,	

REMARKS

Completed as observation bore in Gambier Limestone aquifer. Cement plug at top of Kongorong Sand.

	•		o emi	511 C .	ΡJ	Lu,	s at cop	or kongorong band.
CASING	WATERS CUT	WATER LEVEL	DEPTH (m)	GRAPHIC	AGE	TIND	DEPTH (m).	DESCRIPTION
823m of 6" Cosing			5 ավարկակարակարակարակարակարակարակարակարակա	TO THE TO THE THE THE THE THE THE THE THE THE THE	OLIGO-MICKENE	Sambler limestone	0 - 0.5	SOIL. Mainly subangular calcareous grains to 1mm. Minor dark brown clay and fragments of bryozoal calcaronite to 1.5cm. Minore quartz arenite.  CALCARENITE. More than 50% bryozoal and other fossil fragments to 4mm.  Subangular quartz grains to 1-2mm.  Minor marl. Some red and yellow staining. Rare subrounded quartz to 0.5mm to 2.5mm. Minor moderately cemented calcarenite fragments. Pale pink brown, grading to pale fawn by 20m.

Drn:

Sheet

Bore Folder No.

	ာပ္	507	level	(E)		Ę 6			· <u>· · · · · · · · · · · · · · · · · · </u>	D	EPART	MENT	OF	MIN	NES -	— sa	OUTI	H AU	JSTR/	NLIA.			· · ·			·		$\neg$
	CASING	WATERS CUT	WATER	DEPTH (m)	COR	GRAPHIC 10G	AGE	N O	. D		l (m)	4	•						DE	SCF	RIPTIC	ON .						
				n edoorden der den den de										`				,							:		į	`
٠				<u> </u> 20		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				٠.									. :					*				
			,			The Francisco								,														
				<i>25</i>											•		i, g					· ·			•			
				<i>30</i>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			32	-	40	1		ai owr		⁄e	wi	th	5%	m	ar]	L <b>,</b>	gra	ndir	ng t		gr	еу
				in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	2						·	•	•	,														
`.				<b>3</b>										;	٠.	:				-								··
						HO CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTO					•			•			:					•						
	١	<u> </u>	<u>.</u> 	40 -	ole	Sta	l le	No.	L	28	6031	001			•	· ·	· .			L	Drn: Dole:			Shee	., 2 Folder	ol No.		3 '/ <b>-</b>

46-48m 20% dark brown angular flint fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  CALCARENITE. Silt size to 3mm. Kainly bryozoal fragments, with minor fossiliferous and calcoreous grains. Minor marl and angular flint fragments to 5mm Gray-brown.  60-64m 10-20% marl.	MARL. With 25-50% bryozoal fragments to 3mm. Minor calcisitite. Grey.  42-46m 5% dark brown angular flint fragments to 3mm. Rare groy silicified marl.  46-48m 20% dark brown angular flint fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  60-64m 10-20% marl.  64-72 FLINT. see overleaf.	[		I.	-		П		T -		. /	·		
40 - 54  MARL. With 25-50% bryozoal fragments to 5mm. Hinor calcisitite: Grey.  42-46m 5% dark brown angular flint fragments to 5mm. Rare grey silicified marl.  46-48m 20% dark brown angular flint fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 5mm or fosalliferous and calcareous grains. Enformarl and angular flint fragments to 5mm or forey-brown.  60-64m 10-20% marl.  64 - 72  FLINT. see overleaf.	MARL. With 25-50% bryozoal fragments to 3mm. Minor calcisitite: Grey.  42-46m 5% dark brown angular flint fragments to 3mm. Rore grey silicified marl.  46-48m 20% dark brown angular flint fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  60-64m 10-20% marl.  60-64m 10-20% marl.		S.	S	1676		<u></u>	O E		-		DEI	PARTN	IENT OF MINES — SOUTH AUSTRALIA
40 - 54 MARL. With 25-50% bryozoal fragments to 3mm. Hinor calcisitite: Grey.  42-46m 5% dark brown angular flint fragments to 3mm. Rare grey silicified marl.  46-48m 20% dark brown angular flint fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  64-64 CALCARENITE. Silt size to 3mm. Hairly bryozoal fragments, with minor fossilifications and calcareous grains. Enformarl and angular flint fragments to 5mm Gray-brown.  60-64m 10-20% marl.  64-72 FLINT. see overleaf.	MARL. With 25-50% bryozoal fragments to 3mm. Minor calcisitite: Grey.  42-46m 5% dark brown angular flint fragments to 3mm. Rore grey silicified marl.  46-48m 20% dark brown angular flint fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  60-64m 10-20% marl.  60-64m 10-20% marl.		CAS	WATER	WATER	DEPTH	9	GRAP	AG	S	l	PTH		DESCRIPTION
Fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 5mm.  CALCARENITE. Silt size to 3mm. Mainly bryozoal fragments, with minor fossiliferous and calcareous grains. Minor marl and angular flint fragments to 5mm Gray-brown.  60-64m 10-20% marl.	fragments to 1cm.  48-54m 5% dark brown angular flint fragments to 3mm.  48-54m 5% dark brown angular flint fragments to 3mm.  Mainly bryozoal fragments, with minor fossiliferous and calcareous grains. Elnor marl and angular flint fragments to 5mm.  60-64m 10-20% marl.			w	*	ان بازن بازی بازی بازی بازی بازی بازی بازی بازی		THE TATE OF THE			2-1-2		. 1	to 3mm. Minor calcisiltite. Grey.  42-46m 5% dark brown angular flint fragments to 3mm. Rare grey silicified marl.
64 - 72 <u>FLINT</u> . see overleaf.	64 - 72 <u>FLINT</u> . see overleaf.			. XX				TATE TO THE STATE OF ALL STATES	OLIGO - MIDCENE	Gambier Limastone	54		64	CALCARENITE. Silt size to 3mm. Mainly bryozoal fragments, with minor fossiliferous and calcareous grains. Minor marl and angular flint fragments to 5mm.
	Borehole State No. 2000 J 100 1					<b>65</b>		HO OF TO A LOCAL						FLINT. see overleaf.

	5	<u> </u>	آج	T	П	Τ	DEPARTM	MENT OF MINES — SOUTH AUSTRALIA
SING	RS C	7 E	- E	GRAPHIC LOG	AGE		DEFARIA	
ర	WATERS	WATER	DEPTH	SE		DEP from	TH (m) 2	298m DESCRIPTION
			بسيسك سيشاسنيسك	4 4 2 4 4 A				FLINT. Grey-brown angular fragments from silt size to greater than 1 cm. Minor grey marl and bryozoal fragments to 3mm.
			111111	AA				68-72m 10% bryozoa fragments.
			40.11.11.11.11.11.11.11	DAG ANH				
			mulmi	DI DI				
			دستاستاستا	A A		72 -•	<b>-</b> 76	CALCARENITE. Mainly bryozoal fragments to 3mm. 10% Silty marl. 5% dark brown angular flint fragments to 3mm.
			12 - 11 miles				· · · ·	
			باستلىبىلىن	4 4 4	choo	76 -	<b>-</b> 78	FLINT. Dark brown-black fragments to 2cm with grey silicified calcarenite. 20% calcarenite as above.
	,		اسلسساسات	A A A A A A A A A A A A A A A A A A A	- MIOCENE	78 -	- 80	CALCARENITE. Mainly bryozoal fragments to 3mm. Up to 50% dark brown angular flint fragments to 3mm. Minor silt and marl.
			<b>80</b>		23/		× .	
:	1		اسلسلشا	70	18	80 -	- 86	FLINT. Dark brown-black fragments to 2cm with grey silicified calcarenite. 20% calcarenite as above.
				777				
			111111111111111111111111111111111111111	NANA	2		,	
			85-	A A				
			1	AN				
			- Innihani	7	/    	86	<b>-</b> 96	CALCARENITE. Mainly bryozoal fragments to 3mm. 50% dark brown angular flint fragments, decreasing to 25% by 92m.
			1 1	A TAN				•
			- مول سنده	ole Sto	<u>입니</u>	<u> </u>	2060	031001 Drn: Sheet 4 of 13
			poren	O16 210		140.	2000	Date: Bore Folder No. 47/-

NG CUT LEVEL (m)	س ا ن	_		ENT OF MINES — SOUTH AUSTRAL	IA	
CASING WATER LEVEL DEPTH (m) CORE	LOG	ž	DEPIH (m, 2	298m DES	CRIPTION	
A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO A CANAL TO	A TOTAL		1. ·			
65 A A			96 – 100	CALCARENITE. At fragments, with f calcareous grains Calcisiltite. Mi flint fragments t	ossilife also, t nor brow	rous and o 3mm. 10%
	MIDCENE	Limestone	100–106	CALCARENITE. At fragments from si calcisiltite, min brown angular fli	lt size or marl.	to 2mm. 5-10% Minor grey-
as - H	109/70	Sombier	106–108	CALCARENITE. 50% fossil fragments angular flint fragrey marl.	to 3mm.	50% grey
			108–120	CALCARENITE. At minor fossil frag off-white, some b Minor marl, calci From 108-110m 20 angular flint fra overall.	ments to rown to siltite. % grey t	2mm. Most pale yellow.
, K						
Borehole S	State	No	2860	31001	Drn; Date:	Sheet 5 of 13 Bare Folder No. 47/-

÷,

	CASING	RS CUT	WATER LEVEL	(ш) н	ă	GRAPHIC LOG	AGE	1 7	DEPARTA	MENT OF MINES — SOUTH AUSTRALIA
	Š	WATERS	WATE	DEPTH	ŏ,	GRA LC	¥	ā	DEPTH (m) from to	298m DESCRIPTION
					5	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
				<b>06</b> 1	1	No.			120 <b>–</b> 128	CALCARENITE. Well cemented, cream.
				استاسلسلين	2		,	ì		At least 50% bryozoal fragments 0.5-3mm Minor shell fragments. Slightly silty. Rare red-brown staining.
				<b>%</b> 4000-1000-1000-1000	Y 15 F	77				
M T TIDE TO LEAD AND A SECOND				بيئ . باستانسانسانسانسا		7 7 20	XEN/E	estone.		
ON	v			. <b>130</b> 1444 - Henrich II.		SHOW STATE	714 -09/70	mb/ar	1281 <b>30</b> 130 <b>1</b> 32	CALCARENITE. Mainly bryozoal fragments  0.5-500 with some calcareous grains and fossil fragments. 50% brown-black angular flint fragments to 7mm. Minor grey marl. CALCARENITE. Moderately cemented. Mainlybroyozoal fragments, off white. 5% angular flint fragments to 5mm.
, , , , , , , , , , , , , , , , , , ,			·	<b>59</b> Juntunhantunian			**		132 <b>–</b> 136	SILTY MARL. Contains 20% bryozoal fragments to 1.5mm. Minor angular flint fragments to 3mm. Grey.
				ساسباستستبليستس	- N. M. A.	FAANTA	,		136 <b>–1</b> 38	FLINT. Angular fragments to 5mm. Dark brown. Minor grey marl and brozoal fragments to 1.5mm.
				40		<i>y</i>			38-140	CALCARENITE. Grains 0.5-3mm. Some bryozoal fragments, off white to yellow brown. Minor grey, well cemented fragments.to 2mm. 20% grey silty marl.
	.*		. (	oreho	) le	Stat		No	2860310	Date: Bore Folder No. 47/-

		5	Į	Ê	Π			Γ	DEPARTA	MENT OF MINES — SOUTH AUSTRALIA
) >-	CASING	WATERS CUT	TER LE	) H1430	CORE	GRAPHIC	AGE	SNI	DEPTH (m)	
		××	*	¤  -	Ц	. TA	_	L	from to	DESCRIPTION
				orden landan landan					140 <b>–14</b> 6	CALCARENITE. From silt size to 4mm. 25% bryozoa and minor fossil fragments. Off white.
				R. Handandan					146–148	CALCARENITE. Well cemented. Grains
	1			ببيرا بينانيدانيدان		2-53			148–154	mainly 0.1-1.5mm, rarely to 3mm. Up to 50% bryozoal fragments, minor fossil fragments. Fawn.
				20		M G				CALCARENITE. Moderately cemented. Yellow brown and white grains 1-3mm.
				արակարակու			IDCENE	Inastone	<b>154–1</b> 58	CALCADENTOR
				KS			1W-05170	Gombier L	X	CALCARENITE. Well cemented fragments 0.1 to 7mm. Cream, with minor bryozoal fragments.
	٠ ي						7		158-160	CALCARENITE. Well cemented pale brown massive fragments to 3cm.
	14700			160					160 <b>–</b> 164	CALCARENITE. Well cemented white frag- ments. Rare bryozoal fragments 0.1 to 2mm. White, brown and red (dolomitic) grains. (10%).
				antinifination dente.					164–166	CALCARENITE. White and brown grains to 1mm. Rare bryozoal fragments.
				165		8				Dire: Sheet 7 of 13
		•	( )	Boreho	o l e	State	е`	No	28603100	Date: Bore Folder No. 47/-

1		5	逆	<u>ء</u>	1		Τ	Τ	DEDARTA	MENT OF MINES SOUTH AUSTRALIA
	A SING	ERS C	ER LE	H.	ĕ	APHIC .0G	AGE	FIN		
٠	ن <u>ت</u>	WAT	₩¥	<u> </u>		. 5 ¯			DEPTH (m) from to	298m DESCRIPTION
	147m OF ST CASING	WATERS CUT	WATER LEVEL	(m) 1950 1 DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH	3800	100 T	1160 - MIOCENE	Gombier Limestone	DEPTH (m) to 166-172	CALCARENITE. White and pale brown grains to 1.5mm. Minor silty marl, rare greenish grains to 2mm.
				animhanaidhmannaidhm		17 - T			186 <b>–18</b> 8 188 <b>–1</b> 98	ments to 3mm. Rare bryozoal fragments to 1mm, fossil fragments to 4mm. Grey.  MARL. 5% bryozoal and calcareous fragments to 3mm 10% grey silicified Limestone grading to flint. 20% colourless subangular quartz arenite, 0.1 to 0.3mm  CALCARENITE. Essentially bryozoal fragments to 2mm. White, well cemented 30% quartz arenite, 0.1-0.3mm, subangular 20% Grey silty marl.
	-			/ <b>30</b>		T 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	1	- 2. - 3.	: !	Boreho	le	Sta	te:	No	. = 2860; 	31001   Drn:   Sheet 8 of 13   Date:   Bore Folder No. 47/-

	<u> </u>
O DEPAR	TMENT OF MINES - SOUTH AUSTRALIA
CASING  CASING  CASING  CORF (m)  DEPTH (m)  LOG  LOG  LOG  LOG  LOG  LOG  LOG  LO	200m
MAN A D DEPTH (m)	290th DESCRIPTION
A S T S T	190-192m Also 10% grey silicified limestone - brown flint angular fragments.  192-198m Quartz arenite decreases to
	less than 10%.
Dec Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan	
WA TO A	
198-214	CALCARENITE. Essentially bryozoal
200 12	fragments to 2mm. 5% silicified Lime- stone fragments to 5mm. 20% silty
	marl. Less than 5% colourless. sub-
	angular to rounded quartz arenite 0.1-0.3mm.
	<b>○ • Jiiiii •</b>
19	
1000	
por TANOE	
	204-206m 10% silicified Limestone.
	206-210m 20% Calcisiltite, minor marl no silicified calcarenite.
	A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp
	210 21/2 50/ 1/2
10- 70	210-214m 5% Marl.
214-220	As above with marl increasing to greate than 50%.
1 1 20 1	96031001 / Drn: Sheet 9 of 13
Borehole State No. 2	86031001   Date:   Bore Folder No. 47/-

CASING	WATERS CUT	VATER - LEVEL	ОЕРТН (m)	GRAPHIC	AGE	LNO	DEPARTMENT OF MINES — SOUTH AUSTRALIA  DEPTH (m) 298m  DESCRIPTION	
	5	*	A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	<b>8</b> 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	,	/	from to	
			Indiadiadiadiadiadiadiadia	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			MARL. Contains approx. 25% bryozoal fragments, minor quartz arenite 0.1-0.3mm.	
5"			a sa sa sa sa sa sa sa sa sa sa sa sa sa	17 77 77 77 7	ENE	stone	Bryozoal fragments decreasing as proportion of total.	
MIM OF 3			A second management of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec	777777777777777777777777777777777777777	100/W -09/70	Combiar Limi		
			aire tanhantindannahanna	++++++++++++++++++++++++++++++++++++++		San San San San San San San San San San		
			daine da da da da da da da da da da da da da	ナーナーナーナーナーナーナーナーナーナーナーナーナーナーナーナーナーナーナーナー				
		<u>۔</u> ا	Boreho	le Stat	ie.	No	286031001 Drei Sheet 10 of 13 Date: Bore Folder No. 47/-	

				<b>,</b>					·	
	<u>.</u> ق	3	EVEL	E		ي			/ DEPARTA	MENT OF MINES - SOUTH AUSTRALIA
	CASING	WATERS CUT	WATER LEVE	DEPTH	CORE	GRAPHIC	AGE	LIND	DEPTH (m)	298m
	U	3	¥ ¥	3		5		ĺ	from to	DESCRIPTION
	Cemant plug at top of Kangarang Sand 147m of 5"		M.	250	udintantantantantantantantantantantantantan	ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナ	OLIGO- MIDCENE		254-256 256- 298	MARL. Some calcareous grains and glauconite grains to 1mm. 10% subangular quartz arenite -0.1 to 0.3mm rarely rounded to 1.5mm - colourless and milky.  ARENITE. Quartz, subrounded to rounded colourless-milky with brown and black staining. 256-258m 10-20% light brown clay, less than 5% black opaques. Quartz silt size to 5mm. 258-262m Minor clay, quartz silt size to 5mm.
ا			· .	Bore	hole	Sta	te	No	2860310	Drn: Sheet 11 of 13
l	7		<u>:</u>	31.5					-000711	Dole: Bore Folder No. 47/-

	<del>۔</del> ي	Ē	EVEL	Ê		<u>ي</u> .			DEPARTA	MENT OF MINES - SOUTH AUSTRALIA
	CASING	WATERS CUT	WATER L	DEPTH	CORE	GRAPHIC	AGE	UNIT	DEPTH (m) 2	98m description
147m of 5."		N .		270 270 The first formal meteory in the decidence of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the first formal meteory of the f			EOCENE	kngwong sand	trom to	270-272m 5% Clay.  272-274m Quartz 0.1 to 1mm, most less than 0.5mm.  274-276m Rare rock fragments. Quartz 0.1 to 3mm, most less than 1.5mm.  276-284m Quartz up to 5mm.  286-286m Quartz mainly less than 2mm, max. 4mm.  286-286m Quartz maximum 2mm.
			-	Boreho	ole	Stat	e	No	.28603100	Drn: Sheet 12 of 13 Date: Bore Folder No. 47/-

CASING	ERS CU	WATER LEVEL	DEPTH (m)	GRAPHIC	AGE	UNIT	DEPARTMENT OF MINES — SOUTH AUSTRALIA	
<u> </u>	WAI	WAT	DE	5	_		DEPTH (m) 298m DESCRIPTION	
١,٠			uhunhunt				290-294m Quartz mostly less than 3m rarely to 5mm.	nm ,
147m of 3			اساسطستاسياسياسياسياسيا		FOCENE	puos .	292-294m Rare weakly cemented sand- stone fragments.	•
						Kongarans	294-296m 5% greenish brown clay. Quartz from silt size to 1.5mm, most less than 0.5mm, most colourless.	<b>;</b> .
			واستانسان	1			298 CLAY. Black, verystiff, with minor, fine colourless quartz.	
			، بالسا	0-7-7		00	700-	
.			-	<u> </u>	49	Tan	END. 298m.	
.			: 1		CENE	FOI		
	.		undun		FO	KINDAY		
3.5			لأنساء			¥		
			عنىلىشلىدئ					
			untun					
			Jun-Tu					
			1					
			أسباب					
			ماست				-	
			milan	1				
			بأسبأه					
			ակաս					
			mulanda					
			سنسيا					
			التيطيين					
			بالسب				1	
			unfin					
	-		السيل					
			1	<u> </u>				
				le Sta		No	. 286031001 Sheet 13 of 1	 Z

***

# LOG · HYDROGEOLOGY

Purpose of Bore STRATIGRAPHIC

Section Adj. 498

State No. 362049801

Gambier Hundred

Department of Mines

Bore Serial No. 115/73 Address Adelaide

Project No. GAM 72

Hausler -Driller.

R.L. Collar (M.S.L.)

Docket No. 224/1/69 Depth 185 m

Commenced 23/10/72

Completed 30/6/73

Casing 10" Casing to 11.28m Co-ords E

Logged by Waterhouse, Valentine Aug. 73

Aug. 73

ŀ	DEPTH (m)	WATER LEVEL (M) SUPPLY-	HOW TESTED	TOTAL SALTS mg/f	ANALYSIS No.
15.	9.0	7.21			
ERS	174.0	8.90			
\ATE					
>					

REMARKS Final "MG" bore Penetrates 67 m of Knight Formation, and completed as an observation bore in Gambier Limestone.

CASING	NWATERS CUT	wwater LEVEL	(m) PEPTH (m)	GRAPHIC P LOG	7 AGE	TINO	PENETRATION O RATE	DESCRIPTION
11.28m of 10"casing.		7.71	-5		Olloo- Mocana Phantage	Gampier Limestone Bridgewater Fm.		Surface:  ARENITE-SILT Quartz grains, most colourless, some pink. Subangular-angular <0.1-0.3 mm, most 0.2 mm. Some organic matter, grey overall.  O-1 m ARENITE. Quartz, colourless to brown, subangular to subrounded, <0.1-0.5 mm, most 0.2-0.3 mm. Larger grains rounded. <5% black opaques 0.1 mm. Ironstone (brown) nodules to 1-2 cm. Brown  1-2 m ARENITE. As above with some red and yellow grains. No ironstone nodules, minor brown clay.  2-4 m ARENITE. As above with 30% brown clay.  4-6 m CALCARENITE. Fragments of well cemented, fawn quartzose calcarenite, with some quartz as above. Minor clay.  6-8 m CALCARENITE. Fragments of well cemented fawn calcarenite.  8-10 m CALCARENITE. Well cemented fawn fragments composed of fawn angular calcareous grains 0.2-3 mm. Minor quartz to 0.2 mm.  10-12 m CALCARENITE. Well cemented fawn fragments composed of angular calcareous grains 0.1-2 m Rare spicules and bryozoal fragments. Minor colourless quartz, subangular to rounded, 0.1-1 mm. Minor clay.  As above, fragments white, fawn and grey. Silty.  14-18 m As above, mainly grey.

1	2	3 4	5 6 7	7 8	9	State N	3620498	01	Rore Co-i-l NI-	115/73	. SHEET 2 O	ΕΩ
<del>                                      </del>	4	3 4		, 8	<del>, y</del>	. Sidie N	<u>~ 3020#981</u>	UI.	pore Serial No	<u>. 110/./3 .                                  </u>	, SMEET Z. O	r .O .
					٠,							_
												•
					-	·	`		•			
			1 +			18-22 m	As	above,	grey and	brown. Bry	ozoal fragme	nts
							2-	-3 mm	Rare quart	z grains to	2 mm.	-
			17 1		*							
					:							
		20	173					•		•		
		-	1 1			. •						
		-	<del>-</del>			00.00		CARRIT	mr As al		ell cemented	4
		1111				22-26 m				Minor white		
		1					fa	awn qua	rtz arenit	e 0.2-0.3 m	n Bryozoal	,
							fı	ragment	s becoming	more commo	on, to 4 mm	-
	.	i i						*				
									•			
		25	1.47									
	.	<b>3</b>				06.00		CADENT	mp 77.6. L			
						26-30 m					agments, whit well cemente	
		111111	10/21						agments.			
		1				·						-
			114-11									
			17, 1									7
			130			00 011 -	CA.	· ·	יתרי נובוו	compared n	naccius brown	
		30				30-34 m					massive brown m. Minor whi	
							. b:	ryozoal	. fragments	s to 2 mm.	Minor black	
			<b>17</b> -1				• • • • • • • • • • • • • • • • • • •	paques	U.1 mm. 2	25% marı - 8	green and gre	<b>.</b> y•
			胃			·						-
			1								•	
						34-36 m	CA	I.CARENT	ጥፑ. 50% ፣	white bryoza	oal and fossi	1
						34-30 III	f	ragment	s. 40% gr	rey/green ma		
			- <del></del>				g	lauconi	te grains	to 2 mm		
		35	1		·		•					
			-14-			26 1111	3.4 A	יבר זם ב	ole amori/a	non 50h	ite bouceasi	-
			T			36-44 m					ite bryozoal colour gradir	ng
			<del>     </del>						rely grey l			-
			TOT								•	
				.								-
			$\left\  \dot{\tau}_{x}^{T}\dot{\tau}\right\ $									-
		-	T-102									
<u></u>	لحد	1 40		Ц_	<u> </u>	<u> </u>						

45	5 + <del>25 + + + + + + + + + + + + + + + + + + +</del>	9		State 46 m 50 m			Contain fragmond MARL.  Contain CALCARI	Grey ins 30 ents Grey ins 5-	with mi 0-50% bl	nor bi lack ar	ryozoal ngular ryozoal	frag flint		•
سيساب باستانسان ماد بيانيانيان	<del>-</del>		46-5	50 m			Contain fragmond MARL.  Contain CALCARI	ins 30 ents Grey ins 5-	)-50% b] with mi	lack an	ngular ryozoal	flint frag		
سيساب باستانسان ماد بيانيانيان	<del>-</del>		46-5	50 m			Contain fragmond MARL.  Contain CALCARI	ins 30 ents Grey ins 5-	)-50% b] with mi	lack an	ngular ryozoal	flint frag		
سيساب باستانسان ماد بيانيانيان	<del>-</del>		46-5	50 m			Contain fragmond MARL.  Contain CALCARI	ins 30 ents Grey ins 5-	)-50% b] with mi	lack an	ngular ryozoal	flint frag		
سيساب باستانسان ماد بيانيانيان	<del>-</del>		46-5	50 m			Contain fragmond MARL.  Contain CALCARI	ins 30 ents Grey ins 5-	)-50% b] with mi	lack an	ngular ryozoal	flint frag		
سيساب باستانسان ماد بيانيانيان	<del>-</del>		46-5	50 m			Contain fragmond MARL.  Contain CALCARI	ins 30 ents Grey ins 5-	)-50% b] with mi	lack an	ngular ryozoal	flint frag		
سيساب باستانسان ماد بيانيانيان	<del>-</del>		46-5	50 m			Contain fragmond MARL.  Contain CALCARI	ins 30 ents Grey ins 5-	)-50% b] with mi	lack an	ngular ryozoal	flint frag		
سيساب باستانسان ماد بيانيانيان	<del>-</del>						MARL. Conta	ents Grey ins 5-	with mi	nor br	ryozoal	frag		•
سيساب باستانسان ماد بيانيانيان	<del>-</del>						Conta	ins 5-	with mi 10% fli	nor br	ryozoal above.	frag	ments	•
20 աևունակարությունակարկանություն	<del>-</del>						Conta	ins 5-	with mi 10% fli	nor br nt as	ryozoal above.	frag	ments	•
20 بىلىيىلىيىلىيىلىيىلىيىلىيىلىيىلىيىلىيىلى	<del>-</del>		50-6	62 m			CALCARI		10% fli	nt as	above.			
<b>20</b> ռևտուտակապարություն	<del>-</del>		50-6	62 m			CALCARI							
20.	<del>-</del>		50-6	62 m			CALCARI							
20 استنسلسيسليسيسلسين	<del>-</del>		50-6	62 m			CALCARI						•	
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	T + + + + + + + + + + + + + + + + + + +		50-6	62 m			CALCARI							
20 يىلىسلىسلىسلى ساسىم ئىساسىلىسلىس	+++++++++++++++++++++++++++++++++++++++		50-6	62 m			CALCARI		•					
20 <u></u>			50-6	52 m			CALCARI						•	
باسبليست				÷		•		NITE.	Well	cement	ed whi	te fr	agmen	ts,
للمستم	1 7/1		1 .				essent	tially ov mar	bryozo	al fra	agments	to 4	mm. +	
3						•	fragme	ents		, Luck c	gurar	. + + + + + + + + + + + + + + + + + + +		
	<del></del>			•	'						٠.		-	•
, matu	710										•		•	
Julian														
4				-	-						٠			
لسا				:								•		
55	<u>-</u> 4							. •						
1									•			•		•
مأس	107			•	• .									
1	7						-							
4											•			
1						•					:			
1111				٠			e.				•.	•		:
4			,											•
4				÷	-									
60		-					•							. •
1								-	• .					
4			62-6	64.m										
- 1	<del>                                      </del>											ell c	ement	ed
,	T		ŀ				carca	- eous	TTARMET	ita to	ı Cili			
udun	+					٠.	047015							
فلساس	~ ~ '	1	104-6	pp W										117 =
60	بالمحييين كيمياني بالميتينين البينيين البي			1	62-64 m		1	fragme calcar	fragments a calcareous  TTT  TTT  64-66 m  CALCARENITE  fragments t	fragments and rare calcareous fragment  TTTT  64-66 m  CALCARENITE. Esser  Fragments to 3 mm.	fragments and rare dark calcareous fragments to  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	fragments and rare dark grey w calcareous fragments to 1 cm  64-66 m  CALCARENITE. Essentially white fragments to 3 mm. Minor grey	fragments and rare dark grey well of calcareous fragments to 1 cm  TTT  TTT  TTT  64-66 m  CALCARENITE. Essentially white bryon	fragments and rare dark grey well cement calcareous fragments to 1 cm  64-66 m  CALCARENITE. Essentially white bryozoal fragments to 3 mm. Minor grey marl, ang

1	2	3 4	5 6 7	8 9	Sto	nte No. 362	049801	Bore Serial No.	.115./73.	SHEET 4 O	F 8
	1		170			:					
			1 + + + + + + + + + + + + + + + + + + +		66-68 n	· .	and rare		ilty. 5% Bry , well cement		
			T T		68-70 m			ey, silty. s to 1.5 mm	30% white h	oryozoal	
	 	Lunt	7 TO								
		70-	7 A A		70-76 π		5% Bryoz	oal fragmer	lack fragments to 2 cm.		•
		uu	DA				10% Quart		colourless	to fawn,	
			N/V					. ,	•		
		11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						•		
		1	4 4						• •		
		اسسا					••			•	
		1	VA					·			
		75	90								_
		استبياسينيا					fragments	s in conc.	, subrounded. Hcl residue ? silicifie	, up to 6 m	m
		-80	++++++				76-80 m	(uncement 3 mm) 20% calci 15% dark fragments	irudaceous ca ted bryozoal isiltite grey angular s to 3 mm dec n-80m Bit sa	remains to flint creasing to	
		لسلسلسا	4-14-14-14-14-14-14-14-14-14-14-14-14-14			·.	80-82 m	40% calc	irudaceous cal l remains to s black calca	alcarenite 8 mm inclu	
			*					spines) 5% grey a with mode fragments	angular frag erately well s of flinty o	ments to 3 : cemented	mm
		95	<del>                                    </del>		82-94 n		CALCTRUDA		lcisiltite. ARENITE. Bu:	ff 10% weak	·lu-
		, , , , , , , , ,	+ F=+		02-34	•	to moder + bryozo 10% calc	ately well al and ech: isiltite	cemented fra inoid remains	agments to	
			τ φ τ τ ψ τ τ ψ τ				Minor bl	1% glaucom ack flint : rtz arenite	fragments to	2 mm + min	or
			=				82-86 m				
			7-7		·		86-94 m	10% Marl	Buff	•	
					1						

	en en en en en en en en en en en en en e	
	- L - L - CC00H0004	115/72
1 2 3 4 5 6 7	B 9 State No. 362049801 Bore Seria	I No 115/73 SHEET 5 OF 8
	94-102 m  CALCIRUDACEOUS Cabrown to grey. polyzoal remains cemented calcare 5-10% black angulation fragments to 5 m  94-98 m 30% calcare 3 mm 6 mm 6 mm 6 mm 6 mm 6 mm 6 mm 6 m	ALCARENITE. Off white to Predominantly uncemented to 1 cm with 5-10% weakly enite fragments to 7 mm. Har calc. siltstone & flint mm  Lear calcite fragments, ave. In diam. Precrystallized. Include the fragments iron oxide to diam.  Alcisiltite fragment of the marl ins the odd fragment of the conite to 1 mm diam.
100 mm mm mm mm mm mm mm mm mm mm mm mm m	increases with of A few calc. silt 102-104 m 40% Ca Fossilto we fragme	depth as does plasticity. Itstone fragments are present. Indicirudaceous calcarenite. I fragments to 5 mm with weak Il cemented calcarenite International contents to 1 cm. Rare glauconite International contents to 1 cm.
		alcarenite (uncemented polyzoal ents to 2 mm)

1	2 3	4	5 6	7 8	9	State No.	362049801	Bore Serial No. 115/73	SHEET 6 OF 8
	1	1	T			116-118 m	CLAYEY MARL	. Grey, plastic & :	
			7 T T T T T T T					116 & 118 m	<u> </u>
   			T			118-126 m	CLAY. Brown	n, silty, arenaceous	5
		-120-					1 5 (	20% quartz arenite, transparent & subang subrounded 0.1-0.5 (ave. 0.1 mm) minon calcarenite (? conta	gular to mm diam. r bryozoal
		1 =				,	120-122 m	30% quartz arenite a	as above.
							1 I N	10% """ ' 10% nodules dark gre plastic clay and off Minor lignite + 5% o (contam.)	f white marl.
							124-126 m 2	20% quartz arenite a	as above
		-125				126-1 <mark>28 m</mark>	10% brown s	greenish grey, plas silty clay containing for 118-120 m. Min	ng quartz
						128-136 m		ey marı. ITE. Light brown-gr nsparent, subangular	
		130					moderately	well sorted (0.1 mmm) Minor bryozoa	n - 0.5 mm diam.,
						1	I	25% greenish grey c plasticity.	
								10% plastic clay as sample 132 m conta	
								Less than 5% clay as A few transparent m 0.5 mm - 2.0 mm dian	ica flakes,
		-135							
,						136-138 m	black. Pla (qtz.) & s: 138 m - mi	dark chocolate broasticity low, slightilty (less than 5%) nor subrounded quarquartz arenite.	tly arenaceous . Bit sample
		-				138-144 m	transparen	ITE. Brown. Poorly t & subrounded grainm. (ave. 0.8 mm)	
		140					138-140 m	Rare ? pyrite grain	s 1 mm diam.

<u> </u>	T. 1	1 -	<u> </u>	1.		Т	. 1	۲.	T	000010001	445/50
1	2	4	4	5	6	+	8	<u>,</u> 9		362049801	Bore Serial No
			-	بمليبه ممقلات ملهمه معامعة					138-144 m (cont.)	140-142 m	50% dark brown and light greenish grey plastic clay. Bit Sample 142 m dark chocolate brown plastic clay.
			-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					·	142-144 m	As above but much less clay (less than 5%, brown & light grey, plastic)
			-						144-150 m		NITE. Brown, silty 5% fragments gnitic) clay to 10 mm
			-145	,						144-148 m	Grains transparent, subrounded, moderately well sorted (0.1 mm - 1.5 mm diam., ave. 0.2 mm)
			-	***************************************		·				146-148 m	Lighter in colour + only slightly silty.
			-							148-150 m	Grains transparent, subrounded & poorly sorted (0.2 - 2.0 mm, ave. 0.5 mm) 20% grey-green & black plastic clay.
			-150								
			-130						150-152 m	plastic i 148-150 π grains 2-	enish grey & brown, silty & n part. 10% quartz arenite as for A few frosted, rounded quartz 5 mm diam. Bit sample 150 m stic clay
			-						152-154 m		own, of low plasticity. Less quartz arenite, ave. 0.1 mm diam.
			- 155						154-156 m	equidimer 0.1-0.9 m	ENITE. Silty, transparent, ed to subangular, well sorted, asional to elongate quartz grains am diam. (ave. 0.1 mm) egreen & black plastic clay.
			-			-			156-174 m		ck chocolate brown, lignitic & plastic but generally silty & of low plasticit
						1				160-162 m	Some grey-green plastic clay.
			-	1		}					1
			_	1		1					
			-			=					
			-160-	1		=					4
				41		-					
			-			] ],					1
			-	1	三	4					4
				1		1					
}			-	1	三	1					1
			-	سيلت		=					
				1		4					

	,			· <del>1   -</del>	1	Τ			
1 2	3 <b>A</b>	4	5 6	7 8	9	State No.	3,62	049801	Bore Serial No. 115/73. SHEET 8. OF 8
	T					156-174 m (cont.)		166-168 m	Streaks of mid-brown clay, with 5% quartz arenite - grains transparent, subangular & well sorted (0.2 - 0.5 mm ave. 0.2 mm)
		1		]					
		mlundi						169 m	Bit sample - Black plastic clay with light brown streaks
		-170		1		,		170-174 m	
		سلسا							transparent, subrounded & poorly sorted (0.1 - 2 mm diam. ave.
		عاسا							0.5 mm)
		1							
		4				,			
		1				174–185 m		ΔΡΕΝΤΨΈ	Ourney cando with block along
174	<b>M</b>	ما الم			,	r,4-102 III		No sample	Quartz sands with black clays. s bagged for examination.
		1 T						-	
		175							
		1				,			
		1							
		4							
		alan							·
		lum.							1
		1							
		4							·
		180-				•			-
		ملتنا				•			·
		لسا				1			
		ستا							
		and				,			
		سلس							
		ماسي							
		Juni							
		-185		1			C N D	05 40.5	105
		, 1				·	END	OF HOLE	185m
		1							-
		4							
		dum'							1
		لسل							
		antho							
		1				į			
		100							
				4	<b></b>	<u> </u>			

								. <i>1</i> . 1	DEPAR	TMEN	NT OF A	MINES	— sc	DUTH A	NUSTRA	LIA		. •		SHE	ET 1 01	<b>F</b> 10
				;					E	BOR	E L	OG.	· HYD	OGEO	LOGY							
Hun Owr Drill Corr Drill	idred her i her i hmend i type	C .	KON A B 22, ABI	DEP' TOO! '9/:7' LE .Te	ON T. HE 1.	G Y L	)F Co Cir	MIN: mpleted	ES. i 1!	<b>∧</b> 5/1 ter	ddress . 7.72	R	L. Collar L. Surface	IDE (M.S.L.) 18	.18 .712	.870	ore Seria	Project I Docket I Depth Co-ords	103, • <b>X0</b> 1 •. 27 190	/72 N 1 24/1	(M.0	
اً ا	DEP	тн	(m)	WAT	ER L	EVI	EL (m	SUPP	LY-				HOW TE							AN	ALYSIS	No.
WATERS CUT	.6	.1	•		3	• 7	7 .		•						•			sui 10 (			shee	ts
REA	<b>/A</b> RK		. I	ON .	1)		:		REA ·	ŞT	RATI · · ·	IGR <i>i</i>	APHIC	BOi ·	RE M	G3.	(0)	3S.E.R	VŅT.	ION	BOR.	ย.
~ CASING	NWATERS CUT	wWATER LEVEL	A DEPTH (M)	GRAPHIC LOG	7 AGE	NO 8	PENETRATION RATE						≱	DI	 ESCRIPT	ION						
			5 S					0.1.3.	15 - 0 -	- 1 3· 4·	0 m · · · 5 m · · · · · · · · · · · · · ·		CALCA ments white 12.0 ments	band etc. om resto. fra 1 resto. fra 1 resto.	Eula Qual Qual Qual Qual Qual Qual Qual Q	r quark artz ght z Sil picu nts.care mIron t f Mamaded fragments cem m.	art; brow, or or ity, less inster inff off on yoz ent Con	with two sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of the sets of t	that he had a second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the se	organia de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania del compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del c	mm, rete and z picut cm. fra quan	les o - rtz

... <u>-</u>

	. •			1	
	,			;	
1 2	3 4 15	5 6 7 8	9	State No. 439043	1901 Bore Serial No 10.3/72 SHEET 2. OF 10
					16.5-18 m. Contains grey recrystallized calcareous fragments to 8 mm.
	20_	¥ + + + +		20 <b>–</b> 23 m.	18 - 20 m. Contains 20% marl.  CALCISILTITE. 20-30%. Bryozoal -
					and calcareous fragments to 3 mm.  Dark flint fragments to 7 mm.  Pale grey.
	25			23 - 26 m.	CALCARENITE. Silty Bryozoal and calc. fragments to 5 mm. Flint fragments to 5 mm.
	?			26 - 27.5 m	As above, No flint, but some silicified limestone.
	manufination	+ + + A+ A+ A+ A+ A+ A+ A+ A+ A+ A+ A+ A		27.5 - 32 m	ments to 5 mm. 50% Dark flint to 1 cm.
-	30	+ + + + + + + + + + + + + + + + + + +			
	h	H 44 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		32 - 33.5 m 33.5 - 35 m	FLINT. Grey black angular fragments to 2 cm. <5% calcisiltite, minor bryozoa to 1 cm.  FLINT. As above, bryozoal fragments 10%.
	35_	A CALL		35 - 36.5 m	CALCARENITE. Silty.bryozoal frag- ments and echinoid spines to 5 mm. 5% flint fragments to 1 cm. Green.
	Learnerellean	0 0 0		36.5 - 38 m 38 - 41 m	FLINT. Grey fragments to 2 cm. 20-30% fossil fragments to 6 cm. CALCARENITE. Bryozoal, echinoid
,	40	1 P P P P P P P P P P P P P P P P P P P			fragments to 5 mm. 40% flint fragments to 1 cm. Cream.

1 2 3 4 5 6 7 8 9	State No. 43904390/ Bore Serial No103/72 . SHEET 3. 0F10
	41 - 58 m. FLINT. Dark grey fragments to 3 cm. 10-20% Bryozoa and calcareous fragments to 3 mm.
45 TA	
20 A D A D A D A D	
55 A A A A A A A A A A A A A A A A A A	
	58 - 59.5 m CALCISTLTITE. Marly. Minor bryozoa and calcareous fragments to 8 mm. Minor red/brown ironstone fragments to 3 mm. 20%
60 A A A A A A A A A A A A A A A A A A A	flint fragments to 1 cm.  59.5 - 62.5 m FLINT. Fragments to 2 cm. Minor bryozoa and calcareous fragments to 3 mm. Silty.
	62.5 - 67 m CALCARENITE. Bryozos and calcar- cous fragments to 4 mm. 40% flint fragments to 2 cm.
65	

				•						
			٠.,	٠		•				
1 2		5 6 7	8 9		State No.	43904	3901	Bore Serial No	103/7	2 SHEET .4 OF 10
	65						•			
	***************************************	D I		67 -	- 68.5	5 m	CALCA	RENITE.	30% Fli	nt.
	Jenetarilinet	V DI		68•5	5 - 70	) m	eous :	fragment • Minor	Bryozoa s to 5 m flint to	and calcar- m, slighly o 1 cm.
	70		`	70 -	· 73 π	ı [`]	CALCAL eous	<u>RENITE.</u> fragment	s to ろ mr	and calcar- m, most 0.5 cm. Gream.
				D 7	500			· · · · · · · · · · · · · · · · · · ·	<b>7</b> 0 • 5	
	75			79 -	.,76 π		fragm:	ants to Rare bry Minor	2 mm, ave ozoal fra	alcarcous erage <0.5 eggents to mm. Silty.
	Luntempent, mateur front mit.				77.5 - 84		fragms fragms ments CALCAL ferous mm.	ents to ents to to 1 cm REMITE. s fragme	1 cm; 5% L. Cream, Bryozea ; ents to 1 flint fi	or calcareous flint frag-
	80 111111111111111111111111111111111111									
	uhudantunla	44				·			·	
	85			84 ~	· 87 π	1	iragent	ents to	3 mm5-	5-10% beyonoal -10%. Flint ff white.
	4			87 -	. 92.5	5 m	pryos	oal frag Flint f	Silty. I ments to ragments	Wainly 3 mm. 40- to 1 cm.
	90	72-87 18-21						······································	•	

2 3 4 1	5 6 7	8 9	State No. 439043	90/ Bore Serial No 103/72 SHEET 5 OF 1
90	2/10			abre sending
	15.4		,	
1				
	斑り		00 5 07	The Nation
4	400		92.5 - 93 m	FIAM. Angular fragments to 1 co 30% fossiliferous calcarenite
-	D A			(bryozoa, shell fragments,
1				echinoderm spines to 5 mm. Minor
1 1	10		93 - 94.5 m	silt. Dark. CALCARENITE. Fossiliferous as
95_	400		- サノ = シャデ・ノ い -	poove. 5% angular flint frag-
1	VA			ments.
1	$\Delta_B A$		94.5 - 97.5 m	FLINT. Angular fragments to 5 mm.
1 1			,	10% fossiliferous calcarenite as above.
4	DA		97.5 - 108 m	CALCARENITE. Mainly bryogoal
1	54			fragments to 3 mm with calcisilt- ite. Cream. 5% angular flint
1				Imagements to 2 cm.
1		İ		
100	7-7			
1	7577			A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA
1 4		·		At 107-108 m. 15% angular flint
				fragments, and grey marl blebs to
1			108 - 114 m	2 cm. CALCARENTTE. Mainly bryogoal
1	Τ <u>Α</u> θ27		100 - 1 1 m	fragments dv. 2 mm rarely to 1cm
.mair				20-30% Marl. Grey.
الما			•	110-111 m 20% angular flint. fragments, Marl <10%.
105	三次			113-114 m Minor red/brown stein-
105	2		, -	ing on some calcareous fragments
1 1	34		. V.	
l and			ě	
1				
1	过			•
-				
"	1117		,	
110_	上智			
1 1	10 77			
-	DA I			
	望加			
1	[ <u>]</u>		114 - 116 m	MARL. Groy. 20% Angular flint
			-	fragments to 4 mm. 20% foscil- iferous calcarenite, mainly
1 1 4				bryozoa to 3 mm.
-	ا احب سدا	1		5y 020a 00 9 mm.

/

•			, , .	s		
	:					
	2 3	4	5 6 7	8 9	State No. 43904	(390/ Bore Serial No. 103/72 SHEET 6 OF 10
1	•	115	TAFT			
			40000000000000000000000000000000000000		116 - 119 m	FLINT. Angular fragments including silicified fossiliferous calcarentite. 30-40% calcarente (mainly bryozoal fragments to 3 mm).
		120	44		119 - 123.5 m	CALCARENITE As above.  119-120 m 40% angular flint fragments.  120-123.5 m 20% " "
		.tunlintanlı				
					123.4 - 128 m	CALCARENITE. Minor bryozoal frag- ments to 3 mm, av. 2 mm. Crear.
		125				
		بساسين ساست			128 - 129.5 m	CALCARENITE. As above with 20-30%. Calcinilitie. Marly. Fawn.
		130 miles			129.5 - 137 m	CALCARENITE. As above with 5% Calcisiltite
		باسساستا				
		135				
					137 - 148 m	136-157 m Minor marly blebs.  CALCARENITE. Essentially bryozoal
		استلسياسين				fragments to 2 mm. Minor calcis- iltite. Well cemented. Form.
,		140				

Γ, Τ.		5 6 7 0	9	State No. 439043	190/ Box Social No. 407/170 SMEET 17.05.4
<del>                                     </del>	2 3 4	5 6 7 8	+ 9 +	Stole No. 703040	190/ Bore Serial No 1()3/72. SHEET . 7 OF 1
		श्रेप्स			
		-10	}	1	
		120			
	-				•
ł					
	145_				
	-			•	
	-	[4]			
	-	W-W			147-148 Harly.
		豆		148 - 187.5 m	CALCARENITE. Dolomitic in places Gream.
İ	-				149-150 Marly
	150		1		
			٠٠.		-
.		日		•	
			1.		•
					455 455 5 N
					154-155.5 Marly
	-				
	155	+1			
	-				
Ì				•	
	-				
	-				
	-				
	160_				160-161.5 Marly
	-				•
	-	五二			,
				•	
					163-166 Marly
				•	
	-				
	165				

					Liver .				;				-			·	į		٠.				
F	1	2	3	165	6	7 8	9		S	tote No.	4.	3904	13901		Bore	Serial N	lo′	103/	<b>′</b> 72 .		SHEET	8	<b>o</b> f 10
				Lunkunt	呈		!						I +								į		•
				- dam				1.											۰	ŗ	•		
				mata				,								:			•				
				mini													•						
				170											`			•					
				!/0_																			
				ساس																			
				بلسيان							•												
				. 1			:															•	
	,			lantin	吕			,	•														
				7										•		:							,
	:			175	日						•						·.						
				وسطسيكمبيلسا			٠. ,																
				21/72012						•					. ,								
				Landa			i		•	-		••	,							•			
				باستا										-				•	•			•	
				anlan																			
				180					. •									٠.					_
			9	ماسما																,			,
				سيقسنا	古							٠											
	,			Junt	_'_					«													
				بيلسا																			
				and an	日					:											i		
				185										٠									_
				andana				18	36	_ 18	37	m	Ma	rlj	T								
				Lugar					-	_ ,(	/	111	1.10	<del></del> ,)	′		•						
				ببلسنا				18	87.	5 <b>-</b>	18	39 m	ı 50	196 I.	Marl			•					
				mlm m					• "						i .			•					
				1	田			1 18	89	_ 10	90.	5 ar	ı 10	26 5	נויפתר	lar	fli	ำกะ	frag	me	nts	te	

1 2	4 5	6	7 8	State No. 4	139043901	Bore Serial No.	103/72	SHEET 9 OF1
	1905	Tel		- 190.5 END.			10.77 / 1	3
	4					* •		÷
	1 4		1					·
	1				· · · · · · · · · · · · · · · · · · ·			
	4					•		
	1				•		٠	
						•		•
					•			
		-					•	•
	4				•		•	
	4				,	•		•
	-							
	1							`
	=	}						
	1			·		. •	•	
	1		.					_
	1				·	. ~		_
	4				y <b>a</b>			
	1				**			
	4				•			
	4						•	
		-	-			* *		
1.	1							
	1 4							
	4	.		·				
	4							*•,
	1			·	•	• •		·
	باسبهبياسياسياسيا				•			
	   Tun			ν'		·	,	
	 				• .•			
	1				,	•		
	1				•	. •	•	
	4					•		
	<b>├ -</b>				i	•		
	4			ľ		•		
	1	}						
	كسياسياسياسياسياسيا	. }					· .	
	1				•			
	"						<b></b>	
	4					wiki ili	•	
	4							•
1	1 4	1 1	11			•		

*:* ..

#### HYDROGEOLOGY SECTION

# **BORE LOG**

HIRER DEPT. OF MINES

Drill type Cable Tool

A.M.G. Zone

Circulation Water

Logged by M.A. COBB Coords. E

Driller L.A. Hausler Date logged 10.3.72

u N

Start 27.10.71 Finish 5.12.71

Bore Diameter

Datum Elev.

STATE No. 463004401 Project No. MAC 35 Docket No. 224/1/69 Bore Serial No. 105/72

HUNDRED MacDONNELI

SECTION Adj. 44.

DEPTH 218m

(m) Ref. Pt. Elev. Surface Elev.

Bore Folder No.

Depth to	Depth to	<u> </u>	SUPPLY	TOTAL DISSO	DIVED SOLIDS
Water cut (m)	standing water (m)	litres/sec.	Method of test	Milligrammes/litre	Analysis W. No.
6.1	5.5		· · ·	SEE SUMMA	RY SHEET
		·			

REMARKS

Mt. Gambier Area, Deep Bore Series (M.G. Numbers) MAC 35.

<u> </u>							
CASING	WATERS CUT	PTH (m)	GRAPHIC	AGE	T17		DESCRIPTION
Š	WATE	DEPTH	<b>₹</b> 3	Ă	Ď	DEPTH (m)	»
6.6m of 0.152m Cosing		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			•	0 - 0.3 0.3-4.5 4.5 - 6 6.0-7.5	SOIL. Dark brown, some calcrete fragments.  QUARTZOSE CALCARENITE. Pale-medium brown. Average grain size 0.3mm. About 40% quartz silt and sand. dest bryozoa tubes, calcareous chips, spicules. Decrease ir quartz with depth.  CALCARENITE. Off white-pale grey. About 20% silt size. Average grain size 0.5-1mm. Dominantly bryozoal tubes rest calcareous chips. Some cemented fragments.  SANDY CALCISILTITE. Pale grey. About 60% silt size, average grain size less than 0.2mm. Dominantly bryozoal tubes. Some large flint chips.  CALCILUTITE. Medium grey. Sticky - between 9-70.5m small flint chips common. Becomes more silty with depth.

			<u>:</u>				. :	<u> </u>		
	S _Z	CUT	LEVEL	(£)		٠ ٢		-		MENT OF MINES - SOUTH AUSTRALIA
	CASING	WATERS	WATER	DEPTH	ő	GRAPHIC	¥ el	SN I	DEPTH (m) 2	18m DESCRIPTION
	÷		4	hinten linetiment					15-23	SANDY CALCISILTITE. Medium grey.  About 40% sand size grains dominantly bryozoa tubules. Much Flint. Becomes somewhate paler with depth. Some well cemented fragments.
			ľ	lunlunti				-		
			,	<b>10</b>					23 <b>–</b> 26	CALCARENITE. Off white. Average grain size 1-1.5mm. Dominantly bryozoal tubes and calcareous chips. Flint chips make up about 20% of sample.
1	ı			سياسيسان		N		, ,		
				<b>25</b>		<b>1</b>			26 <b>–</b> 45•5	GANDY GALOTOTI MIMP
				باستساسلسات		N A			20 -49.9	SANDY CALCISILTITE. Pale-medium grey.  About 30% sand size. Essentially bryozoa tubes and calcareous chips.  Much flint. Slightly darker in colour and with a moderate clay content (20%) between 36.5-41m and 42.5-45.5m
				90 -				4.		
				, Indianie:	-  -  -				λ	
				سب " تراستلسنان				-		
				<b>ببن</b> سباسان		- N				
`						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			•	
				40	1	1+n		L		Drn: Sheet 2 of 10
	,		• 1	Boreho	le	Stat	е	No	463004	401 / Bore Folder No.66/-

		LD.	: =	(£)	T		; 	DEDARTA	AENT OF MINE	S SOUTH AL	ISTRALIA	. 77.512	<del></del>	•
	CASING	ERS C	WATER LEVE	DEPTH (r	GRAPHIC	AGE	I N			3 300 111 710	33710121			,
	Ů	WATERS	WAT	DEP	8			DEPTH/ (m) from to	218m		DESC	RIPTION		
		* :		i . mahu	T ∆.				II				A S	
				السا	4									
	٠.			-1	70									
				utti	1									
				, in the second								•		
				- 1	12-							٠		
				15	14			45.5-47.		RENITE.	Bufi	f-pale g	rey. Ave	erage
				ushtu	A				bryoz	oal tube:	s and	i calcar	esus chi	os.
1					100	1			Flint	chips co	ommor	J o		
				1	4			47 <b>.</b> 3 <b>-</b> 52	STLTY	CALCARE	TTE.	Pale	grey to o	off
	*, *			11	N ¹ A				white	with der	oth.	About	30% silt	size
.				in tanta	+				Flint	chips co	ommor	J. Hud Calc	areous cl	nips.
				. 4	F/J					•				.,
				<b>o</b>	4			52 <b>–</b> 61	CALCA	RENITE.	Off	white-c	ream (°	Lean
				1	F				cal.ca	renite es	ssent	cially b	ryozoal t	ubes
				, Januari	FM	-		· ,	very	common be	etwee	n 55 <b>-</b> 56	flint by .5m. Ave	erage
				, id					grain	size 0.5	7 mπ C—C	1.		
					14	1								
					77 "	1						•		
				. 4		-		1	12 S					·
				55	1-1									
	.*		,	ار بسلب	PWP							• • •	•	,
				-	7	1						· ·		
		·				7						,		,
	. *				AH	-	, -   							
				اسطنا	12/4		·	61 <b>– 7</b> 9	STLTV	CATCADEN	 T T T T -	Dal a	medium gr	30V
				60-		1.	'		About	30% silt	siz	e grains	s. Flint	dom-
	• •			• intin		-	ŀ		30% of	f sample	by 7	2m then	to about only a s	mall
				1	7/17				amount	of flin alcareous	ıt.	Rest bry	yozoa tub	es
				undu	MA						-			
	•			ساسما	4	4						•		
				1	##	4							4 .	
				   11	1 1	1					1			
		Ļ	<u></u>	65	T M	<u> </u>	<u>L</u>	1 2 4				Drn:	Sheel 3 of	
				3oreho	le Sto	te	No	4630044	01			Drn: Date:	Bore Folder No.	10 66/ <b>-</b>

G CU1 EVEL (3)	1	DEPARTA	MENT OF MINES - SOUTH AUSTRAL	.IA	
CASING WATERS CUT WATER LEVEL DEPTH (m) CORE GRAPHIC LOG	AGE	DEPTH (m)	218m des	CRIPTION	
70					
80		79.2 <b>-</b> 80.9	CLAYEY CALCISILT white. About 40 tubes. Average 0.1mm.  SANDY CALCISILTI darkening with d size grains. Es tubes and calcar flint.	% clay, grain signation signature. TE. Palepth. Agreements and sentially	e-medium grey, bout 40% sand y bryozoal
Borehole State	, No	4630	04401	Drn:	Sheet / of 10 Bore Folder No.66/-

								<u> </u>		<u> </u>			-	
ي	CUT	EVEL	(E)		<u>ن</u>			DEPARTA	NENT C	F MINES - SOUTH AUSTRA	LIA			
CASING	WATERS CUT	WATER L	DEPTH	CORE	GRAPHIC 10G	AGE	LNS	DEPTH (m) from to	218	<b>m</b> DE	SCRIPTION			
			hhh					90 <b>-</b> 91.5	A	LAYEY CALCISILT bout 30% clay a zoa and calcare	nd 20% sa	nd siz	ze.	Bry.
			in land					91.5-93	S. A	ANDY CALCISILTI bout 30% sand s	<u>TE</u> . Medi ize grain	um—dai	rk g	rey.
•			95-					93 <b>–1</b> 00 <b>.</b> 5	<b>b</b>	LAYEY CALCISILT ecoming pale wi ncreasing to ab	tli depth.	Clay	r co	ntent
1				1	+ + + + + + + + + + + + + + + + + + + +									
			100 -		- <u> </u> - - - -			400 5 407				_	,	
	A. VA	,	باستاسياسي					100.5-103	·•り	SANDY CALCISILA About 30-40% s	<u>FITE</u> . Pa	le gre No f	y-b lin	uff. t.
			ارا		- M			103.5-128		CALCARENITE.  age grain size bryozoal tubes No flint. Inc. with depth.	0.3-0.5m and calc	m. Es areous	sen ch	Aver- tial: ips. ent
			S. Inning	1	7			. "			••			
			1		N									• .
			lim	1	丁 炒									
			110		//u						- -	:	•	
				†						Between 114.5- essentially ca size less than	lcite gra	if an ins. G	y f rai:	ossi. ns
		-	1.5									·	•	
	ť	-	Boreh	ole	Stat	te	No	463004	401	14.14 /4.	Drn: Qale:	Sheet Bore Folds	5 01	10 66/ <b>-</b>

(m) (m)			MENT OF MINES — SOUTH AUSTRALIA
CASING WATERS CU WATER LEVE DEPTH (m) CORE GRAPHIC	LOG	DEPTH (m)	218m DESCRIPTION
		128-140	Between 120.5 and 125m flint chips appear and fossil spines become dominant Becoming silty some harder cemented fragments.  Below 125m grades to a calcisitite.  CALCISILTITE. Off white to buff. Minor calcarenite (up to 10%). No observable fossils.
140	!!	<u> </u>	Drn: Sheet 6 of 10

				• / .	•ر				· " ,			٠.	41.	• • •	· · · · · · · · · · · · · · · · · · ·	
	. ق	P.O.	EVEL	(E)		ñ				VENT	OF MINES	_ SOUT	H AUSTRAL	JA 🖓 🚶		V
	CASING	WATERS CUT	TER L	DEPTH	Ö	GRAPHIC LOG	AGE	LNS	DEPTH (m)	218	in		DEC	CDIDTION		
		<b>≯</b>	WA	ا ۃ ا	1	<del>5</del>	Ŀ		from to		· · · · · · · · · · · · · · · · · · ·		DES	CRIPTION .	·	
ł				ando	ļ							<u> </u>	•			ı
				1	1	<del>,   ,</del>	-		140-143.	5	CALCA	RENI	re. Bu	Aff. Ave	erage grain 10% finer	l
-				. 1	ľ				A	,	mater	ial.	<b>7 • 4mm •</b>	About	O70 IIIei	
1			. 1	7			<u>.</u> .		Ι, .							
				Lint	ľ	<u>'</u>										İ
1				1.1		Щ,				_						Ì
I					-	F 7		1	43.5-158	5	CALCI	SILT	ITE. I	Buff grad	ling to oran nt increases	ge
ĺ				1	+	+					with	depti	i (quit	te plasti	c at 158m).	
ł				145	1				;			-				
				1								-				ı
1				Linit	F	<del>-                                    </del>										l
	٠.,			1	þ	- +					•	· .		,	· ·	l
				נוזרנו	1	7						•		1.		•
				1	1	-					•	•	••••••			
				1	ľ	$\mathbb{T}'$			•		•		;		•	- [
۱ ا						- +					-					
l				150.	,	+,										
				, al	I	- +	٠.		• •		٠.	* :				
1	¥ 47				1	+			<i>i.</i>							1
	•	ŀ		4	1	- +			*,*			•	17			
				السا		土,		,	,		• .				· ·	.
- [	•					+							,			İ
l				11		1										Ì
Ì					1							•				
l				1	1				,	!						ļ
				122	1	7								. , ,		ļ
ł				]		H					-	_				
ł		·	1	1							,					1
1									*	,	•	:				. 1
			j	-	-				158.5-218	3	CALCI	LUTI	E. Bu	iff to li	ght grey. Si	ilt
				1		-				.	fract	ion s	ay 10%	6. Becom	es darker	ļ
l				. 1	F				1,1	'	grey	with	aeptn	below 16	01.5m	İ
				1	Ц	-								s.		
ı	ĺ			160-	+	-   -						."	•			
1				.   .   .	H	-				,		:			•	
				lui.		<u> </u>						•	•	٠.		
				سار		<u> </u>			<u>;</u>							
				1111	-										. · · · ·	. ,
		- 1		1	4	-										ļ
				1	h							-		•	•	
Į			٠	Lunt	μ							• • • • • • • • • • • • • • • • • • • •				Į
-				165=			L	L_				<u> </u>	·····	·. ·. · · · · · · · · · · · · · · · · ·	7 40	
			_8	Boreho	١ē	Stat	e	No	46300	)440	)1		-	Drn:	Sheel 7 ol 10 Bore Folder No 66/-	
L									-	***			•	Date:	sois toigst MODO   =	- 1

DEPARTMENT OF MINES — SOUTH AUSTRALIA.    Output	g	Ę	EVEL	Ê		<u></u> <u>U</u>	T		<u>.</u>	DEPARTA	MENT OF A	VINES	— SOUTH A	USTRALI	Ą,					$\neg$
	N S	ERS	ER 16	Ŧ	ő	APH.	4GE	I.	, i		•			, ; -						
	3	WAT	WAT	DEP	1	ຮ້		]		[H (m) to"	."			DESC	RIPTION					
				80 100	_ <del></del>	CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO CRAPHIC TO	AGE	UNIT	/DEP	TH (m)	AENT OF A	AINES	— SOUTH AI		•					
Drn: Sheet 8 of 10				باستان										1		· <del>-</del>				
Borehole State No. 403004401	<del>                                     </del>				- <del>  </del> : -	Sin	ll te	N-	46	3004/	401						Sheet 'E	3 01	10	

ing.

DEPARTMENT OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF MINIS — SOUTH AUSTRALIA  OFFICIAL TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT	ΰ	CUI	LEVEL	Ê	≌		_	DEPARTMENT OF MINES - SOUTH AUSTRA	LIA	
20	CASIÈ	WATERS	WATER	DEPTH	GRAPI	AGE	INO.		SCRIPTION	
200					1					
200			,	=		-				
200				1	1	4				
200						1	- "			
200				1	-					
200				4	-1-	-				
200				, 1	-	$\  \ \ $				
200				1	-1-	<b>'</b>   [				
200		i		7	1-1-1				•	
200   1   1   1   1   1   1   1   1   1				195-	<del>      '</del>					
200   1   1   1   1   1   1   1   1   1				1						
200   1   1   1   1   1   1   1   1   1	13	Н		1						
200   1   1   1   1   1   1   1   1   1	•			]	- -				· · · · · · · · · · · · · · · · · · ·	
200   1   1   1   1   1   1   1   1   1				1						•
20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				- 1						
20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				. =						
20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1			:						
20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				1						
20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				200	F   -					
20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				1						
200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				• -	-1-					
200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	4			=======================================	-					
Borehole State No. 463004401	•	-		릨	-1-	1				
Borehole State No. 463004401					<u>-</u>					
Borehole State No. 463004401				- 1	-1-	+				
Borehole State No. 463004401				. 1	1-	rl I				
Borehole State No. 463004401				. =						
Borehole State No. 463004401				200		4				
Borehole State No. 463004401					1	4				
Borehale, State, No. 463004401			-	<u> </u>	1	7				
Borehole State No. 463004401				1	4-	4				
Borehole State No. 463004401	•		١١							
Borehole State No. 463004401				-	1-1	4				
Borehole State No. 463004401					- -					
Borehole State No. 463004401				-1			,			
Borehole State No. 463004401				=						
Borehole State No. 463004401				1	-					
Borehole State No. 463004401				210-						
Borehole State No. 463004401  Drn: Sheet 9 of 10	• .				-					
Borehole State No. 463004401  Drn. Sheet 9 of 10										
Borehole State No. 463004401						4				
Borehole State No. 463004401										
Borehole State No. 463004401						Ц				
Borehole State No. 463004401									•	
Borehole State No. 463004401 Drn. Sheet 9 of 10					1	4				
1   1   1	į				<del>-</del>					
Borehole State No. 463004401				أحررا		1			<del></del>	
	_		ا پ	Boreho	le Sta	te	No	463004401		

ا يو	LEVEL	(m) F	¥ .,			DEPARTA	MENT OF MINES - S	OUTH AUSTRALIA		
CASING WATERS CUT	WATER	DEPTH	GRAPHIC LOG	AGE	S	; DEPTH (m)	218m	DESCRIP	NOIT	
						14.				:
							· .			·
		1	<u> </u>				<b>.</b>			
			<del>   </del>					· · · · · · · · · · · · · · · · · · ·		
		1	11			•		· END OF	BORE.	281m.
		-1				1				
		nthin				•		•		
	ŀ	220	,							
										Ϋ,
		1111								
									•	
		undi			-					
		Thu							No.	
	ŀ	1								
				٠.,		*	9 ( ) <u>4</u>			
		· uhui		ļ			•	• • •		
		4						·	•	
<u> </u>		.					,			·
		1					• • • • •			
-		-1							•	
.										
-		ulau					-			
		Jun 1								
						,				
.								·		
						•				
			7.4.4	· .						
. [		1				5 (c) (d)				
							**			
•						  - 				
.						• •				•
		1111								
		بسلسبأ سيلس								
·						٠.		* :, · · ·		
		untun				•				. ,
		_ [				4				
		_ 1								Sheet 10 of 10 Bore Folder No. 66/-
*								- Dr		Sheet 10 of 10

	<del></del>				Т		4.4.60
	2	3	4	5 6	7 8	9	State No. 7.310016 01 Bore Serial No. 141/72 SHEET 2 OF 2
			1				•
			اسط				
1.1			1				
10			1				40 0 40 0
Casing			1				18.0-19.0 m Quartz arenite, <0.1mm-0.4mm (Av 0.15) angular to subrounded.
10	ŀ		dini				Minor fine mica.
100			11111		Ó		19.0-21.0m Quartz arenite, <0.1mm-1.0mm (Av 0.15) angular to subrounded.
510/100			20-		X	1	Approx. 10% black clay.
1 1			1		N/A		21.0-24.0 m 60% <u>quartz arentie</u> as above.
125			علسا		والا		40% black clay.
100			- I		کی ا		23.0-24.0 m clay grey-black and well mixed with arenite.
18			1		5/5		well mixed with arenite.
55.01			4		10/2		
			and and		1 3		24.0-25.0 m 60% clay, grey-black.
			Limi				24.0-25.0 m 60% clay, grey-black. 40% Quartz arenite, 0.1-0.4 mm (Av 0.15 mm) Minor fine mica
╽╻	-		-25-				
			411				End of hole 25.0 m.
			1				
			i di di di		' Ì		
			lund.				
			1				
			after				
	i 		المسا				
ļ.			-30				
	-		علىسا				
			باسما				
			لسما				
			4				
			ماميد				
		$  \  $	4				
			-35	1.			- -
			1111				
			الم				
			للسرا				
			1				
			1				
			1				•
			40		Щ	<u></u>	

#### DEPARTMENT OF MINES SOUTH AUSTRALIA

#### HYDROGEOLOGY SECTION

## **BORE LOG**

HIRERDEPT. OF MINES.

Drill type Cable Tool

Circulation Water

Drillei?.B. Toohey
Start 20.5.72
Finish 24.5.72

logged by F.W. ASLIN Coords. E

Date logged 10.10.72Bore Diameter Datum Elev.

DEPTH 16m

(m) Ref. Pt. Elev. Surface Elev. HUNDRED YOUNG

Sheet

Bore Folder No.

SECTION Adj. 829 STATE No. 731082901
Project No. YOU, 3
Docket No. 231/69
Bore Serial No. 145/72

Depth to	Depth to		SUPPLY	TOTAL DISSOLVED SOLIDS					
Water cut (m)	standing water (mi	litres/sec.	Method of test	Milligrammes/litre	Analysis W. No.				
		•	,	:					
12	7.77			3.45	W2359/72				
, <del>-</del>				3.45 3.45	W2360/72				
		I	;	<b>,</b> , , , , , , , , , , , , , , , , , ,					
	]	,	· ·	ļ					

### REMARKS

Bit sample 16.0. No tube core.

CASING	WATERS CUT	WATER LEVEL	O E P T H (m)	GRAPHIC	901	AGE	DEPTH	.; I (m) 10	DESCRIPTION
589m of 6'casing						Oligo - Miocene	20-20-20-20-20-20-20-20-20-20-20-20-20-2	+.0	Approx. 10-20% fossil fragments to 2mm.
	$\perp$		-15-	Ŀ		ß	<b>27</b> E	<u></u>	· · · · · · · · · · · · · · · · · · ·

CUT	(E) 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MENT OF MINES — SOUTH AUSTRALIA
CASING WATERS CUT	GRAPHIC LOG AGE	DEPTH (m) from to	16m DESCRIPTION
	115	14.0-16.0 END	Approx. 60% Black Clay. 40% Quartz Arenite 0.1-5.0mm (Av. 0.4mm) subangular - subrounded colourless, milky and greenish.
		i k	Minor fine mica Bit sample 16.0m
			END OF HOLE 16.0m
	20		
1	ulu: jantu:		
	1		
	411111111111111111111111111111111111111		
	1		
	1	-	
	111111111111111111111111111111111111111		
	111111111111111111111111111111111111111		
			•
	100110011001101101101101101101101101101		
لللت	<u> </u>	. <b>7</b> 310829	Drn: Sheet 2 of 2

# APPENDIX F

Daily Rainfall Figures, Mt. Gambier Aerodrome (data from the Bureau of Meterology, Adelaide, S.A.)

(in points, with values in mm in parentheses)

Daily Rain gaugings for Mt. Gambier Airport for  $\underline{1972}$ 

4       -       -       1 (0.25)       -       1 (0.25)       7 (1.78)         5       7 (1.78)       -       -       -       -       -         7       41 (10.41)       -       -       -       -       -       -         8       12 (3.05)       -       -       -       -       -       -       -         9       55 (13.97)       -       -       -       16 (4.06)       -       8 (2.         10       -       -       -       16 (4.06)       -       8 (2.         11       2 (0.51)       -       -       -       3 (0.06)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <th>DAY</th> <th>JAN</th> <th>FEB</th> <th>MARCH</th> <th>APR</th> <th>MAY</th> <th>JUNE</th>	DAY	JAN	FEB	MARCH	APR	MAY	JUNE
3         -         -         1 (0.25)         -         1 (0.25)         7 (1.78)         7 (1.78)         7 (1.78)         -         -         1 (0.25)         7 (1.77)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< th=""><th>1</th><th>1 (0.25)</th><th>-</th><th>- (0.54)</th><th>-</th><th>-</th><th>-</th></t<>	1	1 (0.25)	-	- (0.54)	-	-	-
4         -         -         1 (0.25)         -         1 (0.25)         7 (1.78)           5         7 (1.78)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	2	1 (0.25)	-			-	- (0.05)
5         -         -         5         (1.27)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>3 1</td> <td>-</td> <td>- -</td> <td></td> <td><del>-</del></td> <td>1 (0.25)</td> <td>1 (0.25) 7 (1.78)</td>	3 1	-	- -		<del>-</del>	1 (0.25)	1 (0.25) 7 (1.78)
6       7       (1,78)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>5</td> <td>-</td> <td>- -</td> <td>-</td> <td>5 (1.27)</td> <td>- (0.23)</td> <td>/ (1./6)</td>	5	-	- -	-	5 (1.27)	- (0.23)	/ (1./6)
8       12 (3.05)       -       -       76 (19.30)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	6		-	-		-	-
9 55 (13.97)	- <b>7</b>	41 (10.41)	•	-	• -	-	-
10	8	12 (3.05)		-	76 (10 20)	-	-
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     -     58 (14)       29     -     1 (0.25)     3 (0.76)     -     -     50 (12)       30     1 (0.25)     -     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -     -	9 √10	55 (13.9//)	<u>-</u>	• •	76 (19.30) 16 (4.06)	• · _	8 (2.03)
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     -     58 (14)       29     -     1 (0.25)     3 (0.76)     -     -     50 (12)       30     1 (0.25)     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -	11	2 (0.51)	-	-	10 (4.00 <u>)</u>	<u>-</u> .	
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     -     58 (14)       29     -     1 (0.25)     3 (0.76)     -     -     50 (12)       30     1 (0.25)     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -	12		-	1 (0.25)	1 (0.25)	<b>-</b> ·	-
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     -     58 (14)       29     -     1 (0.25)     3 (0.76)     -     -     50 (12)       30     1 (0.25)     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -	13	•	-	_	_	-	-
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     34 (8.64)     -     5 (1.27)       29     -     1 (0.25)     3 (0.76)     -     -     50 (1.27)       30     1 (0.25)     -     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -     -	-14	-		3 (0.76)	2 (0.51)	· –	
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     34 (8.64)     -     5 (1.27)       29     -     1 (0.25)     3 (0.76)     -     -     50 (1.27)       30     1 (0.25)     -     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -     -	15. 46	-		2 (0.76)	-	- 21 /7 07\	-
21       -       29 (7.37)       -       -       4 (1.02)       8 (2.4)         22       -       3 (0.76)       -       35 (8.89)       -       -         23       1 (0.25)       2 (0.51)       5 (1.27)       70 (17.78)       6 (1.52)       -         24       -       -       -       67 (17.02)       3 (0.76)       -         25       -       -       -       4 (1.02)       -       -         26       -       -       -       4 (1.02)       -       -       -         27       -       -       -       34 (8.64)       -       5 (1.27)       5 (1.27)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	17	_		3 (0.76)	_		-
21     -     29 (7.37)     -     -     4 (1.02)     8 (2.02)       22     -     3 (0.76)     -     35 (8.89)     -     -       23     1 (0.25)     2 (0.51)     5 (1.27)     70 (17.78)     6 (1.52)     -       24     -     -     67 (17.02)     3 (0.76)     -       25     -     -     -     4 (1.02)     -     -       26     -     -     -     4 (1.02)     -     -     -       27     -     -     -     34 (8.64)     -     5 (1.27)       28     -     -     -     34 (8.64)     -     5 (1.27)       29     -     1 (0.25)     3 (0.76)     -     -     50 (1.27)       30     1 (0.25)     -     -     -     -     43 (10)       31     1 (0.25)     -     2 (0.51)     -     -     -     -	18	_		<u>-</u>	-		-
21       -       29 (7.37)       -       -       4 (1.02)       8 (2.4)         22       -       3 (0.76)       -       35 (8.89)       -       -         23       1 (0.25)       2 (0.51)       5 (1.27)       70 (17.78)       6 (1.52)       -         24       -       -       -       67 (17.02)       3 (0.76)       -         25       -       -       -       4 (1.02)       -       -         26       -       -       -       4 (1.02)       -       -       -         27       -       -       -       34 (8.64)       -       5 (1.27)       5 (1.27)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	19	-	6 (1.52)	-			-
28 - 58 (14 29 - 1 (0.25) 3 (0.76) - 50 (12 30 1 (0.25) - 2 (0.51) - 43 (10	20	-		-	-	,	<del>-</del>
28 - 58 (14 29 - 1 (0.25) 3 (0.76) - 50 (12 30 1 (0.25) - 2 (0.51) - 43 (10	21	-		-	25 (0.00)	4 (1.02)	8 (2.03)
28 - 58 (14 29 - 1 (0.25) 3 (0.76) - 50 (12 30 1 (0.25) - 2 (0.51) - 43 (10	22	1 (0:25)		- 5 /1 27\	35 (8.89) 70 (17.70)	- - (1 = 2)	•
28 - 58 (14 29 - 1 (0.25) 3 (0.76) - 50 (12 30 1 (0.25) - 2 (0.51) - 43 (10 31 1 (0.25) - 2 (0.51)	24	1 (0.25)	2 (0.51)	5 (1.2/)	67 (17.76)	0 (1.52) 3 (0.76)	-
28 - 58 (14 29 - 1 (0.25) 3 (0.76) - 50 (12 30 1 (0.25) - 2 (0.51) - 43 (10	25	-	-	-	4 (1.02)	-	
28 - 58 (14 29 - 1 (0.25) 3 (0.76) - 50 (12 30 1 (0.25) - 2 (0.51) - 43 (10	26	-	-	-	<del>-</del>	1 (0.25)	-
30 1 (0.25) 43 (10 31 1 (0.25) - 2 (0.51)	27	-	; <b>-</b>	-	34 (8.64)	- -	5 (1.27)
30 1 (0.25) 43 (10 31 1 (0.25) - 2 (0.51)	28	, <del>-</del>	1 (0.05)	2 (0.76)	-	-	
31 1 (0.25) - 2 (0.51)	<b>∠</b> ¥. 30	1 (0.25)	1 (U.25)	3 (U./b)	-	-	
	31	1 (0.25)	- -	2 (0.51)	- <del>-</del>	• • ••• ••• ••• ••• ••• ••• ••• ••• •••	43 (10.92)
TOTAL 193 100 42 310 77 183	<del>,</del>				<del></del>		· · · · · · · · · · · · · · · · · · ·
	TOTAL	193	100	42	310	77	183

Daily rain gaugings for Mt. Gambier Airport for 1972

	•			\ 		
DAY	JULY	AUG	SEPT	ОСТ	NOV	DEC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	18 (4.57) 5 (1.27)	18 (4.57) 33 (8.38) 7 (1.78) 3 (0.76) 22 (5.59) 15 (3.81) 69 (17.53) 26 (6.60) 51 (12.95) 29 (7.37) 8 (2.03) 4 (1.02) 2 (0.51) 1 (0.25) 3 (0.76) 41 (10.41) 11 (2.79) 6 (1.52) 9 (2.29) 2 (0.51) 5 (1.27)	2 (0.51) 23 (5.84) 13 (3.30) 6 (1.52) - 14 (3.56) 47 (11.94) 2 (0.51) 1 (0.25) 9 (2.29) 4 (1.02) 3 (0.76) - 12 (3.05) - 6 (1.52) 1 (0.25) 1 (0.25) 1 (0.25)	6 (1.52) 3 (0.76) 25 (6.35) 16 (4.06)  1 (0.25) 2 (0.51) 6 (1.52) 24 (6.10) 37 (9.40) 1 (0.25) 1 (0.25) 5 (1.27)  2 (0.51)	5 (1.27) 7 (1.78) 2 (0.51) 55 (13.97) 16 (4.06) 24 (6.10) 5 (1.27) 2 (0.51) 15 (3.81) 1 (0.25)	1 (0.25) 3 (0.76)

Total, less 1 mm for each rain day =  $\underline{409.22 \text{ mm}}$ 

APPENDIX G

Water Analyses

# WATER ANALYSIS RESULTS

	•		•					•																				
/4			HUNDRE	BLANCHE	:			. •			м	illigra	imates p	er litre								Mi 116	-equivale	nte ner	11170			
, , ,	Bore	Date ,	Sampling	Temp.	Cond.	711	Dissolved	cop	Calinian	٠.						•	•		_									
			Hethod				Oxygen		Salinity	Ca.	МБ	Na	ik	HCO3	504	Cı	NO3	P04	Ca	Mg	Ne	F.	HCO3	504	Cl	NO3	PO4	Red Salinity
	BLA 1	17/11/72	W/M	18	710	7.3	4.6	10	395	92	19	35	• 1	346	15	46	16	٠.0	4.6	1.6	1.5		5.7	0.3	1.4	0.3		379
	2	17/11/72	. 8	18	720	7.4	9.9	10	385	82	11	45	-1	262	10	64	44	<.01	4.1	0.9	2.0		4.3	0.2	1.8	0.7	-	341
	3	17/11/72	B P	17 _ 17	2950 1060	7.1	3,4	5 25	588 1684	133 297	· 6 -	70 183	3	365	10	91	95	<.01	6.6	0.5	3.0	0.1	6.0	0.2	2.6	1.5	-	493
	5	10/11/72	P	15	860	7.2	8.0 9.3	10	474	81	, 54	65	8	369 265	10 10	460 88	490 80	.01	14.8	1.2	8,0 2.8	0.2	6.1	0.2	2.5	7.9 1.3	-	394 1186
		10/11/72	P	15	900	7.4	10	15	468	72	24	65	5	310	15	86	50	.02	3.6	2.0	2.8	0.1	5.1	0.1	2.4	C.8		415
	7	8/12/72	<b>%/M</b>	16	670	7.2	9.9	20	340	80	9	42	- 1	255	10	6.5	11	<.0:	4.0	0.7		10.1	4.2	0.2	1.6	0,2	-	129
	8	7/11/72	P	15	880	7.2	10	20	389	41	30	67	-1	275	S .	87	16	<.01	2.0	2.5	2.9	0.2	4.5	0.1	2.5	0.3	-	373
	9	8/12/72	N/M	17	5 80	7.0	9.2	15	290	80	5	26	-1	210	5	45	30	<.01	4.0	0.4		-0.1	3.4	0.1	1.3	0.5	-	260 1
	11 12	2/11/72	W/M W/M	16	445	7.1	9.6	20	586	125	11	50	1	225	15	95	180	<.01	6.2	0.9	2.2	•	3,7	0.3	2.7	2.9	-	406
	13	28/11/72 28/11/72	N/H	21 .	600 810	7.5	7.0 6.3	5 10	312 377	75 86	9	29 40	-1	231 259	5 10	49 56	30 47	<.01	3.7 4.3	0.7	1.5		3.8 4.2	0.1	1.4	0.5	-	282 530
	14	1/12/72	W/M	22	830	7.3	8.8	15	417	95	11	45	1	255	5	67	70	1.01	4.7	0.9		< .1 ·	4.2	0.1	1.9	1.1	-	347
	15	30/11/72	W/M	23	900	7.4	. 5.5	25	462	69 .	28	66	-1	315	5	89	50	•.01	3.4	2.3		+ .1	5.2	0.1	2.5	0.8	-	412
	16	10/11/72	P	15	710	7,2	9.8	10	391	62	. 8	74	3	255	20	54	45	.02	3.1	0.7	3.2	0.1	4.2	0.4	1.5	0.7	-	346
	17	9/11/72	P	15	9 10	7.3		15	487	60	24	82	6	255	15	110	65	01	3.0	2.0	3.6	0.2	4.2	0.3	3.1	1.0		1 422
1.0	18	30/10/72	P	16	1130	7.1	•	20	828	109	44	85	20	255	10	135	300	4.01	5.4	3.6	3.7	0.5	4.2	0.2	3.6	4.9	•	524
	19 20	30/10/72		16	1160 380	7.1	-	35	855 400	103	55 20	135	23	425	50	280	*-5	<·01	5.1	4.5	5.9	0.6	7.0	0.3	7,9 1.8	0.6	•	855
	21	3/11/72	P	, 15 15	380	7.2	9.2 9.2	15 15	516	58 89	22	55	7	275 300	15 25	65 70	41 100	01	2.9	1.6	2.5	0.2	4.5	0.5	2.0	1.6	-	416
	22	16/11/72	P	15	685	7.0	10	45	399	90	,	84	-1	185	10	60	105	<.01	4.5	0.6	1.6		3.0	0.2	1.7	1.7		294
	23	28/11/72	W/H	17	6 80	7.4	7.8	5	350	83	11	3.1	1	256	10	50	35	<.01	4.1	0.9	1,5		4.2	0.2	1.4	0.6		315
	24	28/11/72	В	18	690	7.4	10	15	340	82	8	35	1	259	10	52	25	<-01	4.1	0.7	1.5	-	4.2	0.2	1,5	0.4	-	315
	25	28/11/72	W/H	21	700	7.5	8.6	10	344	78	11	38	4	242	5	62	. 31	<.01	3.9	0.9	1.7	-	4.0	0.1	1.7	0.5	•	313 .
	26	28/11/72	W/H	17	500	7.8	6.3	15	253	40	11	35	,	95	5	60	54	<.01	2.0	0.9	1.5	-	1.6	0.1	1.7	0.9	•	199
	27	6/11/72	r	15 15	490 2600	7.3	-	20	382 1247	64 159	18 82	48 165	21	240 925	<5	83 326	45 27	<.01	3.2	1.5	2.1	-	3.9	0.1	2.3	0.7		337
	28 29	6/11/72	8	15	2600 1000	7.0		10	550	159	27	120	11	925 359	<5 45	10.5	27	0.25	7.9	6.7	7.2	0.5	15.1		9.4	0.4	0.3	1220
٠.	30	2/11/72	r .	15	230	7.2	8.5	15	474	52	28	75	.,	320	25	65	65	₹.01	2.3	2.2	5.2	0.3	5.9 °	0.9	2.9	0.3	:	5 %) 409
	31	2/11/72	P	15	250	7.9	9.6	25	998	111	40	175	7	280	- 60	255	225	1.01	5.5	3.3	7.6	0.1	4.6	1.2	7.2	3.5		773
	32	2/11/72	В	14.5	560	6.9	9.4	25	870	120	39	9.4	19	290		140	265	0.20	6.0	3.2	4.1	0.5	4.8	1.0	3.9	1.3	-	605
	33	2/11/72	W/M	15	400	6.9	9.4	25	408	83	17	43	3	230 1	15	75	65	<.01	4.1	1.0	1.9	0.1	3.8	0.3	2.1	1.0	-	343
	34	17/11/72	В	18	440	7.5	2.2	10	232	39	10	37	1	1,54	5	70	2	4.01	1.9	P.9	1.6	-	2.2.	0.1	2.0	•	٠.	230
	36	1/12/72	W/M W/H	21	740 670	7.7	8.4 10	10 10	39 4 372	69. 79	31 15	30	-1	312 255	10 10	41	54 40	.01 10.>	3.4	2.8	1.3	< .1	5.1	0.2	1.2	0.9	-	340
	37 38	6/11/72	W/-1	16 15	400	7.1	10	15 .	455	104	9	40	3	231	-5	75	110	1.01	3.9	1.2	1.7	•	4.2	0.2	1.8	0.6	-	332 345
	39	6/11/72	P	15	90	7.3	5.4	10	690	113	18	B1	3	75	<b>45</b>	124	265	,01	5.2 5.7	1.5	3.5	0.1	3.8	-	3.5	1.8	-	425
	40	2/11/72	P	15	250	6.8	7.6	20	423	57	31	581	4	, 325	15	68	30	4.61	2.8	2.5	2.5	0.1	5.3	0.3	1.9	0.5	-	193
	41	2/11/72	Ρ.	15	380	7.0	8.2	30	843	104	3.1	110	15	265	25	145	275	<.01	5.2	2.8	1,8	0.4	4,4	0.5	4.1	4.4		566
	42	8/11/72	P W/M	15.5	950	7.0	8.5	15	498	88	26	55 83	7 5	330 215	15	80	65 230	.03	4,4	2.1	2.4	0.2	5.4	0.3	2.3	1,0	-	433
	43	8/12/72 22/11/72	W/M W/M	16 14	1230 610	7.3	8.8 7.3	20 15	715 340	124 74	19	38	2	189	1n 5	140 70	48	₹.01	6.2	1.6	3,5	0,1	3.5	0. t	3.9	3.7	-	485 290
	45	17/11/72	h/H	18	710	7.3	7.4	5	371	82	12	40	-1	278	20	51	29	.01	3.7 4.1	1.0	1.7		3.1 4.6	0.1	1.4	0.5	-	342
	47	20/11/72	W/H	· 16	600	7.5	8.6	10	321	65	18	27	<1	234	10	46	40	<.01	3.2	1.5	1.2		3.8	0.2	1.3	0.6		281
	. 48	31/10/72	P	16	740	7.6	9.0	20	4.35	93	21	32	1	300	20	\$5	65	4.01	4.6	1.8	1.1		4.9	0.4	1.6	1.0		170
	49	31/10/73	В	16	670	6.8	8.2	20	456	85	19	60	2	285	15	85	50	٠.01	4.2	1.6	2.6	٠.1	4,7 .	0.3	2.4	0.8	-	106
	50	1/11/72	В.	15.5	430 540	7.7	2,4	20 15	332 478	5.5	18	34	3	240 265	10 5	70 58	14 50	0.2 <.01	2.8	1.4	1.9	0.1	3.9	0.2	2.0	0.2	-	318
	52 53	1/11/72		15 17	560	7.9	3.4	15	281	87 36	13	57	:	173	10	8.3	٠.5	<.01	4,4	1.0	1.5	•	4.4	0.1	1.6	0.8	•	428 291
	54	8/12/72	N/H	20	780	7.3	7.6	15	410	78	19	51	1	300	10	80	20	<.01	1.8	1.1	2.5	1	2.8 4.9	0,2	2.3	0.3	Ξ,	390
	56	30/10/72	8	15	475	7.7	. 9.1	25	225	49	12	41	1	90	10	. 55	13	01	2.4	1.0	-1.8	-	3.1	0.2	1.6	0.2	-`	212
	59	20/11/72	N/M	17	730	7.4	9.4	5	386	70	35	22	4	320	10	37	55	<.01	3.5	2.9	1.0	-	5.3	0.2	1.0	0.9		331
	89-60	31/10/72		16	270	7.8	7.5	15	388	68	34	29	2	325	10	50	35	<.01	3.4	2.8	1.7	1.1	5.3	0.2	1.4	0.6	-	35 ?
	614	7/12/72	N/M	15	765	7.1	1.8	10	390	74	21	500	1	285	1ů	8n	15	0,73	3.7	1.7	2.2	<p.1< th=""><th>4.7</th><th>0.2</th><th>2.3</th><th>0.2</th><th>•</th><th>175</th></p.1<>	4.7	0.2	2.3	0.2	•	175
	62 61 <b>8</b>	6/12/72 7/12/72	N/M N/N	16 16	810 780	7.1	6.6	15 15	430	7S 79	25 20	559 445	11	330 285	15 10	80 75	15 25	*.01 *.01	3.7 3.9	1.6	2.6	*0.1	5.4	0.3	2.3	0.2	-	415 365
	63	7/12/72	P	19	810	7.2	9.8	20	380	74	20	-48	11	295	15	75	3	01	3.7	1.6	2.1	40.1	4.8	0.3	2.1	0.1	· ·	377
	64	8/12/72	W/M	20	890	7.4	5.4	30	425	60	7	103	-11	315	25	80	2	.01	3.0	0.6	4,5	40.1	5.2	0.5	2,3	-0.1	-	423
	6\$	1/11/72	P	15	330	7.1	8.5	15	340	80	7	31	< 1	260	10	42	25	.01	4.5	0.6	1.3	-	4.6	0.2	1.2	0.4		315
	66	17/11/72	В	. 18	620	7.3	2.6	10	29.2	5.5	10	17	2	119	15	72	•0.5	4.01	2.6	0.8	2.0	0.1	3.1	0,3	2.0	•	٠.	292
	67	3/11/72	r	15	255	7.3	7.6	20 15	36.9	63	23	40	4 3	250	10 25	70 95	35	.03	3.1	1.9	2.9	0.1	4.1 2.7	0.2	2.0	0.6	-	333 320
	68 69	3/11/72 31/10/72	P P	16 16	230 236	8.3 7.6	3.2 5.8	15 25	321 278	29 73	10	24	-3 -1	165 245	25 10	95 35	5	.03 <.01	3.6	0.8	1.0	0.1	4.0	0.5	1.0	0.1		273
	73	31/10/72	r	16	310	7.1	9.2	.70	602	122	40	59	-1	405	10	170	6	4.01	6.1	3.3	2.6		5.h	0.2	4.8	0.1		596
	72	1/11/72	P	16	240	7.3	8.5	5	408	69	31	40	1	320	15	170	22	·.01	3.5	2.6	1.7	-	5.2	0.3	2.0	0.1		144
	1 73	7/12/72	N/M	16	1380	6.9	7.2	10	735	R1	3.4	158	4	500	25	185	-1	10.	4.0	2.8	6.9	0.1	8.2	0.5	5.2	<0.1	-	733
•	74	7/12/72	h/M	-17	750	7.1	9.9	15	385	(4.	26	18	1	315	15	60	13	1.01	3.3	2.1	2.1	<. l	5.2	0.3	1.7	0.2	•	372
	· 75	8/12/72	H/M	16	830	7.1	7.4	15	440	8× 83	13	68 50	٠1	305 265	15 10	105	-10	.01	4.4	0.9	3,0	- 1	5.0 4.÷	0.1	- 3.0 1.9	<.1 0.6	•	440 35.3
	77	6/11/72	P.	. 15 15	760 540	7. 2 7. 1	8,6	10 15	393	64	22	68	3	312	5	67 96	75	<.01	3.2	1.8	3.0	0.1	5.1	0,1	2.7	0.5	- :	372
	78	30/10/72		16	710	7.1	10.	15	407	93	20	24	-1	285	15	45	70	1.01	4.6	1.6	1.0	-	4.7	6.3	1.3	1.1	-	337
	79	28/11/72	H/H	21	720	7.4	7.5	10	427	80	16	49	1	267	10	60	60	٠.01	4.0	1.3	2,1		4,4	0.2	1,7	1.3	-	147
	, 80	31/10/72	P		. 208	7.1	6.6	10	304	76	. 9	30	-1	260	15	35	11	٠.01	3.8	0.7	1.3	•	4.3	0.3	1.0	٥.5		29.5
		. 1/11/72	P	15 🔾	590	7.2	9,2	15	380	87	13	41		275	10	82	16	r.01	4.4	1.0	1.8		4.5	2.2	2.3	0.2	•	364
	82	6/11/72	P	15	1260	7.1		10	580	108	-10	98	12	< S	5	157	160	.07	5.4	3.3	4,3	0.3		18.0	4.4	2.6	-	420 360
	83 84	1/12/72	P	17 16	770 700	7.0	7.7	10	420 385	104 82	9 15	38 40	<1 <1	265 280	10 15	69	60 35	<.01	5.2 4.1	0.7	1.7		4.3	0.2	1.9	1.0	:	350
	85	30/10/72	r	15	950	7.0	6.5	15	385 504	99	20	72	1	340	20	120		₹.01	4.9	1,6	3.1	-	3.6	0.4	3.4	0.1	÷	200
	86	31/10/72	P	16	900	7.0	8.9	25	628	110	42	72	4	390	25	175	12	₹.01	5.5	3.5	3.1	-	6.4	0.5	4.9	0.2		616
	87	1/11/72	P	16	290	7,0	8.5	15	467	105	12	63	1	350	10	105	<b>&lt;</b> S	<.01	5.2	1.0	2.7	-	5.7	2.0	3.0			467
	88	7/12/72	P	18	1140	7.1	2.0	15	580	95	27	97	5	405	15	145	<b>+1</b>	.03	4.7	2.2	1,2	0,1	6.6	0.3	4.1	4.1		550
	<b>#9</b>	31/10/72	В	16	270	7.8	7.5		SAME AS															,				
	90 91	20/11/72	N/H N/M	16	. 790 890	7.3	7.8	15 20	436 470	86	23	35	1	305	10	51	A0 4	7.01	4.3	1.9	1.5	-	5.0	0.2	1.4	1.3	•	356
	. 92	1/12/72	W/H .	18.5	730	7.4	8,0	15	381	9,3 89	17 8	43	1	380 290	30 5	90 61	30	1.0	4.6	0.7		-0.1	4.8	0.2	2.5	0.1	:	466 351
	93	1/12/72	W/H	18	1330	7.3	8,2	10	747	99	27	155		445	40	185	20	.08	4,9	2.2		<0.1	7.3	0.8	5.2	0.8		727
	96	22/11/72	W/H	16	1460	7.2	10+	25	816	167	23	60	1	325	- 5			01	8.3	1.9	3.5		5.3		4,8	3.3	-	600

# WATER ANALYSIS RESULTS

	·	·				•	-								• .						•					•
	Hd. CAR	Sampling	Ċ			Dissolved		per Litre			. *	(illi-equiv	stents p	er Litr	•	4.	Mg	Na		ноо,	SO.	CI	×03	ю,	Red Salinity	
BURT:	DATE	Method	Ţemp.	Cond.	pH -	Oxygen	COD	SALINITY	Ca	мв	Na	K iiCO3	50 ₄	Cı	NO 3	PO				<u> </u>						
CAR 1	21/11/72	B N/M	17 16.	980 800	7.1	7.6	s s	532	121 87		S-1 50	1 273 2 251	20 15	143 84	41 • 65	.02 6.0	1.5	2.3	:	4.5	0.4	2.4	0.7	-	491	:
. 3	21/11/72	₩/H	18	016	7.1	8,7	15	308	70		33	1 220	10	(+0	18	.01 3.5	0.7			3.6	0.2	1.7	0.3		387 290	
. 5	21/11/72	H/H H/H	18 18	930	7, 2	7.6 6.0	. 15 . 10	417 537	77 119		54 49	2 300 5 245	15 25	- <b>84</b> 98	17 - 110	·.01 3.8 <.01 5.9	1.6 0.8	2.3	0.1	4.9 4.0	0.3	2.4	0.3		400 127	•
	21/11/72	В	. 16	1380	7.0	2.8	20	706	77		153	5 345	10	2611		.11 3.8	2.4	6.7	0.1	5.7	0.2	7.3		-	704	
	21/11/72 15/11/72	h/H F	16	970 820	7.0	4.5 6.8 .	30 . 10	553 420	45 75		162 49	1 390 2 335	· 25	1031	11	<.01 2.2 - 3.7	0.9	7.0	0.1	. 6.4 5.5	0.5	2.9	0.2	:	\$40 412	
. 10	15/11/72	. F	19	11000	7.1	5.7	. 35	7212	140			82 305	570	1860	₹ 0.5	.02 7.0	22.3	93.1	2.1	5.0	11.7	108.9	•		7212	
12	29/11/72	H/H	17 18	10000	7.2	3.6 7.4	. 50 15	. 375	149 78.			60 315 <1 230	430 10	3165	4 50	.03 3.9	18.3	74.8	t.5	. 5.2 3.8	8.9 0.2	0.1	0.8		\$902 325	
13 14	29/11/72 29/11/72	W/M W/M	21	560°	7.7.	6.2	15	255	55			<1 135	5	50	45	.01 2.7	0.5	1.3	-0.1	2.2	0.1	1.4	0.7	- '	210	
. 15	29/11/72	. W/M .	. 18	710	7.4	8.1 8.2	15 15	400 365	93 92,			<1 185 <1 260	5 10	50 65	125 28	<.01 4.6	0.6	1.3	0.1	3.0 4.5	0.1	1.4	0.5	:	275 337	
10	23/11/72	*/H - 8	15 17	610 1030	7.1	6.0 8.9	. 15	324	78			<1 250	. 5	52	26	01 3.9	0.8	1.3	-	4.1	0.1	1.5	0.4	-	298	
18	16/11/72	В	16	730	7.4	5.5	10 10	519 387	85 ' 73		108 48	·1 255 2 325	20 5	170 71	3	<.01 4.2 01 3.6	0.7	4,7 2.1	0.1	5.3	0.1	2.0	0.1	-	517 382	
19 20	15/11/72	. B	. 15 16	540	7.0	9.8	s	303	89			<1 300	10	30	0.5	.0i 4,4	0.6	0.8		4.9	0.2	0.5			303	
. 21	16/11/72	B ;	14	. 655 680	7.3	9.0	10 15	357 472	78 87			8 160 1 340	10 15	110	70 - 0.5	.01 3.9	0.5	1.3	0.2	2.6 5.6	0.2	3.1	1.1		281 412	
. 22	15/11/72 15/11/72	B . r	15 13.5	560 1050	7.1	8.8	10	297	6.3			1 225	. 15	54	8	- 3.1	1.1	1.4	-	3.7	0.3	1.5	0.1	-	291	
24	16/11/72	N/M	17	740	7.4	0.5 7.6	15	55! 401	107 94		83 47	5 365 3 265	12	150	12	.01 4.7	0.7	3.u 2.0	0.1	6.0 4.3	0.4	3.7	0.2	0.1	340 383	
			,	•					` 1.										ad a c t							
			P MACDONNE		-11		432	e-14. *:	٠,			per litre		<b>.</b> .	607	POA Ca	Mg	Sa	Milli-e	HCO3	ts per 1 SO4	itre C1	NO3	PO4		
Nore	Date	Sampling Method	Temp.	Cond.	pН	Dissolved Oxygen	сор	Salinity	Ca	Mg 1	N.a	k 11003	504	CI	NO3	P04 Ca					,414		.~.		Red Salinity	
w.	50 11/72	14	19	810	7.4	8.7	15	396	86		42 × 43 3		< ĝ.	83		<.01 4.5	1.2		1	4,2	4.1	2.3	υ.7 1.0	•	351	
	30,1172 30,1172	L B	, 15 18	610	6.9 7.4	5.5 9.4	15 15	638 315	71		43 3 36 4	55 300 1 215	10 < 5	75 (62		<.01 6.2 <.01 3.5	0.8	1.6	0.9	4,9 3.6	0.2 <0.1	2.9 1.8	0.5	•	446 285	
	35/41/72	, N/N	19	840	7.4	6.2	10	435 477	100		44 48 1	1 255	10 S	75 70	70 153	.01 5.0	0.8	1.9	<0.1	4.2	0.2	2.1	1.1	•	365	
. :	\$2,111,422 \$2,111,422	h'4 .	15 _ 19	- 810 860	7.4	7.8 8.0	10	477	96			1 184	5	70		·.02 1.8	0.8		0.3 < .1	3.0 3.0	0.1, 0.1	2.0	2.2	-	325 410	
	30 11 72	h 4	15	720	7.2	7.6	10 20	413 460	80 92			1 180	S 10	62 82	125	.01 4.0	1.0.	1.7	0.1 <0.1	219	0.1	1.8	2.0	-	256 150	
. # . 13	39 11 12	• 4	18 17	810 630	7.3	7.9 - 5.8	20	325	64			1 215	10	55	75	.02 3.2	- 1.1.		<0.1	3.6 2.6	0.2	1.6	1.7		150 230	
11	30 (1 f)	e u	18 15	920 1300	7.2	2.7	· 20 20	469	65 74			2 315 12 355	15 20	96 216	30 16	<.01 3.2 .01 3.7	1.6	3.8 0.0	<0.1 0.3.	5.2 5.8	0.3	2.7 6.2	0.5	-	1 † 9 60 5	
12	38411,70 00111-70	F ■ M	17	710	7.0	4.1	- 10	360	81			12 355	10	65	10	<.01 4.0	1.0	1.7	-	1.0	0.2	1.3	0.5		326	
11	• 30 H T2	. * 4,	24 17	820 750	7.5	4.9 8.3	15 15	430 376	92 83			3 235 2 260	10 <5	75 77	80	.15 4.6 .01 4.1	1.0	1.7	0.1	3.9	0.2	2.1	1.3	-	350 346	
_ 16	30/11 72	r,	19	680	7.5	6.4	25	335	65		46 36 .		10	65	10	.01 3.2	1.6		r0.1	4.3	0.2	1.6	0.1.		125	
1,	22/11/12	r	. 17	1320	7.0	8.0	15	762	156			2 340 50 275	15	146	180 260	·.01 7.8	1.9	3.2	-	S.o.	0.3	4.1	2.9		582	
. 20	30/11/72	97H * 97H	. 18	1300 610	7.2	8.4 10	25 15	767 375	132 71		58 5 52	1 275	10	70	20	.01 5.5	1.2	2.3	1.3	1.5	0.2	3.a 2.0	0.3	:	50? 355	
21	30/11/72	₩/H	19	780	7.4	7.3	20 15	395	81 92			1 265 1 345	10 15	72 70	10	.01 4.0	1.l 0.9	2.0 .	0.1	4,4 5,6	0.2	2.0	0.7		1355 420	
22	30'11/72	P/4	20 17	800 595	7.4	8.8 7.5	10	430 302	68			1 173	LS	67	24	<.01 5.4	0.5	1.6	-0.1	2.8	0.3	2.9	0.4		276	
24	21/11/72	₩/M .	16 14	106U 760	7.1	8.3	10 15	583 381	62			2 255	20 5	111	47 1.5	<.01 7.0 <.01 3.1	1.5	2.6	0.1	6.3 4.2	0.4	3.2 3.0	0.8		5.36 360	
26	15/11/72	W/H	16	1010	7.6	7.8	15	541	75	18		3 212	25	182	30	<.01 3.7	1.5	4.1	0.3	3.5	0.5	3.1	0.5	-	311	
27 MAI 28	21/11/72	W/H 8	16 17	1780 1220	7.1	2.0	25 15	1000 628	108 92			3 468 S 395	130 35	279 156	17	<.01 5, 1 .01 4.6	3.6	8.9 4.0	0.1	7.7 6.5	2.7	7.9	u.3	•	1000	
29	21/11/72	В	16	1370	7.3	7.0 L	15	721	108	38 1	00	3 356	\$5	192	50	.01 5,4	3.1	1.4	0.1	5.8	1.1	5.4	0.3	-	671	
30 31	21/11/72	H/M H/M	17	1360 3100	7.0	6.e 2.4	10	706	110			2 36S	45 105	207 780	17	<.01 5.4 <.01 5.5	2.6 5.8	5.0	0.1	6.0 5.5	1.0	5.8 22.0	0.3	-	160 1660	
32	22/11/72	h/M	16	1540	7.1	2.5	35	689	133	43 1		3 390	155	22e		0.15 6.6	3.5	5.9	0.2	6.4	3.3	6.2	-		659	
· 35	22/11/72	*/% */%	17 17	900	7.2	2.5 7.9	30 20	598 480	102			4 395 <1 285	1 35	130	< .01 50	<.01 5.1 <.01 4.8	1.4	3.5 2.5	0.1 •0.1	4.7	1.1	3.7		.\	536 430	
35	16/11/72	r	15	825	7.2	5.0	20	436	70			2 295	ر0ا	110	Įu.	.02 3.5	2.2	2.7	0.1	4.8	0.2	3.1	0.2	- '	426	
· 38	22/11/72	W/M W/M	17 17	900 780	7.7	6.9	10 15	450 385	97 75			1 295 1 205	'10 ,15	90	35 35	.02 3.7	0.7	2.7	*0.1	3.3	0.2	2.5	0.9	:	115 330	
., 40	22/11/72	В	17	1100	7.1	8.7	15	589	101			2 284	₄ 25	151	55	<.01 5.0	1.3	4.3	-	4.7	0.5	1.3	0.9		534	
. 41	22/11/72	W/N W/N	17 13	635 690	7.2	8.5	10 5	341 361	78 67		32 16	2 217 1 273	15 15	56 70		<.01 3,9 <.01 3,3	0.7 1.5	2.0		3.6 4.5	0.3	1.6	0.7	-	299 331	
. 44	22/11/72	W/H	18	2350	7.1	4.6	15	1154	130			3 340	55	179	12	<.01 6.5	0.1	13.1	0.1	5.0	1.1	13.5	0.2		1140	
. 45	21/11/72	HUNDREI	16 HINGBOOL	1130	7.3	•3.8 F	35	535	49			per Litte	20		<0.5	.04 2.4	3.7		Millia-c	3:9 quivalent	0.4 ts per i	5.8 ltre	-	•	272	
- Bore	Date	Sampling Method	Temp.	Cond.	pH	Dissolved Oxygen	COD	Salimity	Ca	мд	Na	k HCO3	S04	ei •	NO3	PO4 Ca	н	Na	k	HC03	504	Cı	NO3	-P04	Red Selinity	
MIN 1	27/11/72		15		7.1	3.0	10	869	142		101	2 381	10			<.01 7.1	1.9	7.1		6.2	0.8	9.8		-	109	
2 3	27/11/72 28/11/72	W/M W/M	17 14	750 1320	7.3 6.9	1.5	20 20	394 686	82 137		57 113	9 276	10 5	91	0.5	<.01 4.1 <.01 6.8	0.7	2.5	0.2	4.5 7.1	0.2	2.6 5.3	-	-	394	
- 4	27/11/72	В	17	680	7.1	3.4	2\$	454	58	11	72	2 309	15	97	1.7	.01 4.4	0.9	3.1		5.1	0.1	2.7	0.2		672 437	
, s	27/11/72 14/11/72	W/H P. i	17 14	980 1460	7.2	1.3	15 15	50B 727	113			1 376	5 25	203	<1 9	.01 5.6	0.7	3,4 5.6	:	6.2 7.1	0.1	3.3 5.7	0.1	. :	508 718	
	14/11/72	В		395	8.7	3.3	15	196	17		18	4 134	5	50	<1	- 0.8	0.5	2.1	0,1	2.2		-1.4	-	-	196	
, ,			"																							
10	27/11/72	1/H	18 15	2100 1430.	7.1	3.2	25 15	1081 752	176 69			1 440 11 295	20 5	434 295		<.01 8.5 <.01 3.4	2.4	6.9		7.2	0.4	12.2		-	1051	
. 12	23/11/72 23/11/72	8	15	1430.	7.3	2.3 .	15	752 643	88			2 323	10	350	0.5	<.01 4.4	1.8	8.1 9.4	0.3	4.8 5.3	0.1	9.9	0.3		734 843	
13	27/11/72	B W/M	17	1650	7.9	2.2 4.5	20 30	825 691	52 93			8 339 79 329	S 40	312 115	53	01 2.6	1,9	8.9	0.2	5.5	0.1	8.8	0.9	-	872	
14	27/11/72 23/11/72		15 155	1240	7.3	2.4	10	64b		13 1	130	1 345	20	204	0.5	1.74 4.6 <.01 5.4	1.1	3.6 5.7	2.0	5.4 5.7	0.8 0.4	3.2 5.8	1.7	-	580 646	
		HUND	RED YOUNG							Mil	ligram	s per litre														
Bor	e Date	Sampling Mathod	тепр.	Cond	I. pH	Dissolved Oxygen	COD	Salinity	Ca	Hg	Na	Ik HC03	504	C1	NO3	P04 Ca	, Mg	Na	K	HCQ3	\$04	C1	ж03	101	Red Salinity	
- YOU	1 20/11/72		160	730	7.3		15	415	96	13	10	1 285	٠5	60	6.\$	<.01 €.	7 1.1	1.7	-	4.7	:	1.7	1,0		409	
	2 30/10/72	P	. 170	375	7.1		15	239	56	7	26	t 210	15	.s0	0.S 7.3	<.01 2.	8 0.6			3.4 4.0	/ 0.3	0.5		-	239	
	3 30/10/7. 4 28/11/7.		16 ⁰	, 425 , 910	7.2		10 15	265 445	60 101	15 13	22 50	4 245 1 264	10 15	30 105	7.3	<.01 3. <.01 5.		2.2		4.3	0.2	0.8 3.0			257 415	
	5 28/11/72	H/H	16 ⁰	1080	7.3	2.5	15	532	100	25	77	2 395	< 5	129	04 2	.01 5.	D 2.1	3.3	. :	6.5		3.6			527	
	6 28/11/72 7 28/11/7		15°	760 760	7.4		10 10	398 384	83 98	10	39 32	2 156 4 301	.: ·s	62 00	25	<.01 4.				4.9	9.1	1.7			334 352	
	8	8U s4s	pled inste	ad									:													
	9 15 20/11/7		BE SAMPLE	:D 850	7.9	10.0	10	451	96	12	57	1 295	- 20	88	34	•.01 4.				4.8	0.4	2.5		-	418	
	16 20/11/72		17°	790 1100	6.4 7.3	3.2 2.8	80 10	428 634	50 98	16 29	92 93	2 285 <1 326	50 70	76 119	<0.5 65	.02 2. <.01 4.		4.0	0.1	4.7 5.3	1.0	. 3.4		:	428 569	
	17 27/11/7; 16 27/11/7;		170	1100 1150	7.3		25	671	100	17	133	1 429	55	154	<0.5	.02 5.	0 1.4	5.8		7.0	1.1	4.3	-		671	
	19 20/11/7. 20 20/11/7.		15°	1600 1580	6.9		25 30	924 795	116 177	32 25	195 89	1 380 1 335	40 15	347 315.	6.5 7.5	<.01 S.			-	6.2 5.5	0.8	9.8 8.9			917 787	
	21 20/11/7	2 H/H	170	. 870	7.1	3.4	15	436	90	17	60	1 375	. 15	66	10.5	<.01 4.	5 1.4	2.6		6.2	0.3	1.9			436	
	22 27/11/7	2 W/M	170	- 1000	7.2	1.9	15	533	117	11	78	2 376	5	125	10	<.01 S.	₿ 0.9	3.4	-	6.2	0.1	3.5	0.2	٠	523	

# WATER ANALYSIS RESULTS

	Pore	Date	Sampling Nothed	Temp.	Cond.	e Při	Dissolved dargen	CHD.	Salinity	Ca	v.	Na	K	HO03	501	è	503	ru:	Ca	¥£	Na		11003	<b>701</b>	Ç1	N93	104	Ted Salants
	GAN	1 27/11/72	<b>h/</b> 4	14.5	1240	7.1	5.1	15	677 .	132	19	102		373	25	191	la.	<,01	11.6	1.6	1,4	0.1	6.1	0.5	5.5	0.3		659
		2 27/11/72	W/M	15	780	7.1	4.3	15	411	90	11	52	٠t	292	10	63	24	.01	4.5	0.9	2.3		4,8	0.2	2.3	0.4		130
		3 24/11/72	H/H	11	590	7.4	53	5	330	69	9	33	<1	178	10	16	75	4.ul	3.4	0.7	1.4	-	2.9	0.2	1.3	1.2	-	255
		1 24/11/72 5 24/11/72	k/H k/H	1   10-	750 720	7.7	8.7 8.0	5 15	383 389	. 71 78	15 10	51	1	251	10	76	-16 -47	01	3.5	0.5	2.2	~	4.2	0.2 0.2	2.1	0.0	•	347 342
		30/10/72	р.	16	ISSO	7.1		30	1173	229	21	109	1	255	10	215	450	.00	3.9	2.0	1.7		4.3	0.3	1.9 6.1	7.2		725
			R	15	600	7.0	9.4	10	310	61	1.5	31	3	285	10	35	77.5	١٥.٠	3.0	1.5	1.5	0.1	1.7	0.2	1.0	0. t		101
			r	15 15	750 1070	7.2	9.0	10	3%1	42-	31	37	3	298	. 5	5.6	143	*.01	3.1	2.6	1.6	0.1	4.9		1.6	0.7	-	135
	11		W/M	19	755	7.4	3.4	10	494 365	78 79	33	58 40	á	225 280	10	129 65	70 20	<.01 <.01	3.9	2.7	1.7	·0.1	1.2	0.2	3.0	1.1	•	121 345
	1:		N/M	23	740	7.6	7.5	20	375	8.2	9	38	-1	200	5	60	65	<.01	4.1	0.7	1.7	<0.1	3.3	0.1	1.5	0.3	-	290
	1.		P	15	710	7.2	9.5	15	370	69	la	40	3	253	< 5	58	*55	1.35	3.1	1.5	1.7	D. 1	4.2		1.6	0.9		315
	11	24/11/72	H/H C	11.\$	640 1000	7.5	6.5 3.4	5 10	338 524	7.1	11	38 80	2	184	15	74	32	.01	3.7	0.7	1.7	-	3.C	0.3	2.2	0.5	-	306
		24/11/72	b/H	15.5	790	7.5	8.3	15	438	107	11	35	3	362 280	10 20	127 81	10 42	<.01	5.1	1.2	3.5	0.1	5.9 4.e	0.2	3.6	0.2		512 376
	10	24/11/72	h/M	15	720	7.5	3.8	15	386	75	10	5.7	1	228	5	19	37	. 04	3.7	0.6	2.5	-	3	0.1	2.3	0.6	-	349
	1		w/4	15	740	7.4	7.5	20	390	8.5	1.2	47	- 1	267	15	76	10	.46	4.1	1.0	2.0	-	1,4	-	2.1	0.6	٠	330
	11		P	16 15	720 1010	7.2 6.9	9.6	15 20	358 482	77 60	31	18	* I 8	250 270	10 10	65 94	-25 -80	·.01	3.8	0.8	2.1	0.2	1,1	0.2	2.7	0.1	•	333
	20		P	15	710	7.1	9.9	10	241	95	13	41	<1	-	s.	00	27	.03	4.7	1.1	1.5		-	0.2	1.7	0.4		214
	21		F	15	890	6.9	8.9	10	166	111	14	48	< ]	325	15	90	28	< .01	5.5	1.2	2.1	-	5.3	0.3	2.3	0.5	-	112
	2:		F	15	620 900	7.1	10.4	10 13	329 448	72 48	13	30 54	~1 5	230 309	10	50 81	39 -60	.01	3.6	3.5	1.3	-	3.5	0.2	1.4	0.5	•	290
	24			BE SAMPLE		/	•		443			3-	•	.509	•	91	60	.01		3.3	2.4	0.1	5.1	0.1	2.3	1.0	-	355
	25	24/11/72	R/H	15	960	7.5	6.5	25	5.18	89	23	RD	1	26-7	30	134	50	.01	4,4	1.9	3.3		4,4	0.6	1,1	0.4		155
	24		F/N	16	750	7.0	5.6	15	408	81	11	55	1	280	20	81	18	<.01	4.2	0.9	2.4	-	4.6	0.4	2.3	0.3	-	390
	27	24/11/72 13/11/72	W/M P	16 15	615 590	7,4	10.0	15	333	69	8	44	1	235	10	52	33	.01	3.4	0.7	1.9	-	3.9	0.2	1.5	0.5	-	200 264
	29		P	15	590	7.1	9.4	15 10	322 353	72 83	7 8	36	< 1 < J	225	10	53	34		3.6	0.6	1.6	-	3.7 4.3	0.2	1.5	e.s	-	119
	30	13/11/72	P	15	610	7.0	9.4	15	324	75	9	34	<1 ^	210	10	53	25	-	3.7	0.7	1.5		3.9	0.2	1.3	0.4		299
	31		W/H	16	810	7.3	7.9	ts	450	95	13	55	1	290	10	70	60	٠.0١	4.7	1.1	2,4	-	1.8	0.2	2.0	1.0	-	199
	· 32	29/11/72 29/11/77	B B	. 18	610 630	7.3	7.0 6.7	15	320 325	64 83	7	46 28	-1 3	195 250	10 5	15	30 30	.01	3.2 4.1	0.5	1.2	0.1	3.2 4.1	0.2	1.5	0.5	-	298 295
	34		N/M	15	970	7.3	2.4	20	196	77	11	100	<1	228	40		<0.5	<.01	1.8	0.9	4,4	-	3.7	U. F	4.4		-	496
	35		F	14	1260	7.1	1.5	20	687	112	23	120	4	384	35	197	7	٠.01	5.6	1.9	5.2	0.1	4.3	0.7	5.5	0.1		630
	36 37		W/H	15 15	690 580	7.4	2.3	15	376 315	96 71	9	42 38	1	290	20 15	54 60	17	.01	3,5	0.7	1.7	0.1	3.7	0.1	1.5	0.3		201 22-4
	38		h/H	16	680	7.4	1.6	15	352	8.3	9	42	<1	267	3	60	13	<.01	4.1	0.7	1,8		4,4	0.1	1.9	0.2		339
	39		Þ	16.5	740	7.3	6.2	15	397	gt	9.	4-1	-1	267	5	69	ir,	١٥. ٠	4.6	0.7	1.9	-	4,4	0.1	1.7	0,7	-	351
	40		Þ/H F	14	720 725	7.4	8.5 8.0	15	119	90 90	9	41 *		228 267	5	7.5 69	65 60	.01	4.5	0.7	2.1	-	3,7	0.1	1.9	1.1		130
	42		N/H	17	660	7.5	2.8	20	350	27	10	42	4	255	5	60	30	4.01	3.6	0.5	1,8		4,2	0.1	1.7	0.5	:	320
	. 43		P	17	710	7.3	8.0	15	360	95	17	12	<b>«</b> )	310	5	6-0	4	<.01	1.0	1.0	1.5	-	5.1	0.1	1.7	0.1	-	15~
	44		N/H	17	630	7.6	9.5	15	325	8.3	5	30	3	220	s	50	40	0.11	4.1	0.4	1.3	0.1	3.6	0,1	1.1	0,7		255
	45		W/M R	14 16	820 580	7.3	4.5	20 10	438 311	. 64D	0	67 51	-1	245	25 20	113 73	17 + 1	٠.0١	4.3 3.0	0.7	2.2	-	4.0 3.4	0.4	3.2	0.3	-	421 311
	47		P	16	660	7.3	2.9	10	357	83	8	40	1	250	25	69	s		4,1	0.7	1.7		4,1	0.5	1.9	0.1		149
	. 48	14/11/72	В	16	ь00	8.2	0.0	30	340	4.5	9	80	1	164)	+5	1.54	0.5	.01	2.1	0.7	3.5	-	2.6	•	3.5	•		315
	49 50	23/11/72	H/H H/H	16 16	880 590	7.3	n.0	10	461 300	72	9	62 33	-1	334 206	.5	108	34	.01	3.6	0.7	1.4	:	5.5	0.1	3.0	0.1	٧:	452 200
		23/11/72	N/H	16	660	7.6	8.0	10	350	78	11	38	-1	215	5	45	41	4,01	3.9	0.9	1.7		4.0	0.1	1.5	0.7	-	30e
		13/11/72	P	10	750	6.9	h.5	15	392	6.9	. 13	43	1	300	10	75	13	-	4,1	1.1	1.9	-	4.9	0.2	2.9	0.2	-	3*9
	. 53 54	23/11/72 23/11/72	₽ 10/μ	15 15	860 550	7.2	8.0	15 10	461 283	102 77	14	sn	1	295	15	6.4	70	<.01	5.1	1.7	2.2	-	4.5	0.3	2.1	1.1	•	211
	55		N/H	15	700	6.8	6.0	10	280	103	5 8	25 40	< l	211 340	5	53 60	14	۰.01 در.	3.8 5.1	0.7	1.1	-	3.5 5.6	0.1	1.5	0.1	-	394 260
	56		r	LS	750	7.0	9.2	10	391	77	21	41.	2	295	10	55	40	<.01	3.8	1.7	1.8	-	4.8	0.2	1.5	0.6	-	351
	57 58	8/11/72	B	14 15	1180 730	6.9	7.0	30	1270	202	64	102	6	26/0	10	260	180	0.92	10.1	5.3	1, :	0.2	4,3	0.2	7.9	7	•	790
	- 59	8/11/72	P	16	900	7.2	8.0 6.4	10 15	375 465	1-4 8-8	21	48	3	290 345	15 15	65 85	- 13 - 22	0.55 <.01	3.2	2.0	2.1	0.1	4.8 5.7	0.3	2,4	0.2	•	362 443
	60	9/11/72	r	15	680	7.0	9.9	Lu	3367	78	9	35	1	223	5	60	-37	<.01	3.9	0.7	1.5	-	3.7	0.1	1.7	0.6	-	299
	61		1	15	560	7.0	-	10	315	69	10	36	2	215	5	5.2	3.5	.02	3.4	0.6	1,6	-	3.5	0.1	1.5	1.0	-	240
	52 63	24/11/72 23/11/72	W/M W/M	15 15	910 1380	7.3	2.8	25 25	478 726	110	8 15	125	1	345 390	10		<0.5	<.01	5.5	1.2	2.9 5.4	-	5.7	0.2	5.2	-		476 726
	**	13/11/72	В	15	760	7.5	9.6	15	327	82	7	32	3	260	25 10	230	25	01	6.9 4.1	0.6	1.4	0.1	4.3	0.2	1.1	0.4		302
·	<u>, , , , , , , , , , , , , , , , , , , </u>	23/11/72	W/H	16	660	7.3	3.5	15	348	87	6	40	3 .	278	.5	5.3	22	<.01	4.3	0.5	1.7	0.1	4.0	٠	1.5	3.4	-	326
•		. )									Mili	igrams	per 1	itre														
															80.	<b></b>	M0.3	no.							_			
	Bore	Date .	Sampling Method	Гевр.	Cond.	pH	Dissolved Oxygen	сов	Salinity	Cn	Mg	Na	I.k	HC03	\$01			LO:	Ca.	Mg	Na .	, 	11003	501	C:	V15	PO4	Red Salimity
	Allendale Sinkhole	22/11/72	В	17.50	810	7.4	45	10	429	ga	21	57	2	517	15	814	12	٠.0)	4.0	1.7	2.5		5.2	0.3	2.4	0.2		417
	Ivens			17.50	760	7.4	8.8	,,,	387	73	20	10	,	290	15	73	lə	<.01	3.6	3.6	2.0	-	1.5	0.1	2.1	0.2		372
-	Flathe Par	21/11/72											•				14	•.01				-	1.5	0.2	1	0	•	
	Allen's	22/11/72	R	170	980	6.7	4.9	15	478	7,3	25	76	2	295	15	128			3.0	2.1	3.3	-	1.5	0.3	3.0	0.2	-	461
	Quarry	17/11/72	н	150	720	7.3	10.0	10	401	83	19	41	<1	306	10	60	37	*.01	4.1	1.6	1.8	-	5.0	0.0	1.7	0,6		364
	Beach Spring	15/11/72	В	17 ⁰	1140	7.3	4.0	20	730	8.4	31	144	s	350	35	250		<.01	4.2	2.8	6,3	ò.:	5.7	0.7	711	3.1		724
	Spring Sec			14 ⁿ	970	7.0	8.8	15	513	28	11	81	,	295	20	125	32	s. 01	1,9	0.9	3.5	-0.1	4.8	c.;	3.5	0.5		481
	159 BLA BLN 12	20/11/72	, ,,8 H/M	220	970 800	7.0	8.8	20	452	105	7	50	1	285	5	74	70	.06	5.2	0.0	2.2	<0.1	1,7	0.1	2.;	1.1		362
	Little		_												5	60	1	.01			, ,		/					
	Blue Lake Bullock	12/12/72	B	190 /	520	8.0	10:	10	230	10	11	35	2	155					2.0	0.9	1.5	1.0>	2.5	0.1	1.7	40.1	•	229
	Hale	12/12/72	μ	160	740	7.2	7.4	15	370	80	15	45	ı	290	16	75	2	. J.	4.0	1.2	2.0	-	4.8	0.2	2.1	Q.1	•	368
	Umpherstor Case	12/12/72	8	150	2475	7.8		10	1520	208	45	230	9	110	605	320	45	0.13	10.4	3.7	10,0	0.2	1.8	12.6	9.0	0.4		1475
	Showgrds.	12/12/72	B	15 ⁰	915	7,1	6.1	15	410	90	18	62	2	315	,to	95	7	1.24	4.5	1.5	2.7	0.1	5.2	0.6	2.7	0.1		453
		*** *** ***		180																							-	
	# Mile				1000	7.5	10	15	465	70	24	78	2	290	15	150	3	.01	3.5	2.0	5.4	0.1	1.8	0.3	3.7	0.1		462
	Creek	12/12/72	в	18	1000	,																						
	Creek Piccannini Ponds Jeti		В	160	3900	7,1	7.5	40	2045	94	85	Section	19	335	1.40	995	*1	. 34	4.7	0.5	21,4	0.5	5.5	2.*	28.1	-		2015
	Creek Piccannini	•						10	2045	94 94	83	560	19	335 320	130	995 200	41	.01	1.7	6.a		0.5	5.5	2.1	28.1	-	-	

# APPENDIX H

Whole Rock Analyses (Gambier Limestone)

EXAMPLES OF WHOLE ROCK ANALYSES (24 March, 1955)

HD. BLANCHE

SEC. UNKNOWN

CaCO3	MgCO ₃	Si0 ₂ (5)	Fe ₂ 0 ₃ (F)	A1 ₂ 0 ₃ (A)	S+F+A
96.79	1.73	0.50	0.17	0.69	1.36
97.59	1.50	0.52	0.19	0.33	1.04
96.79	1.83	0.34	0.15	0.49	0.98
69.71	1.11	24.48	0.84	2.90	28.22
93.97	0.76	2.22	0.50	1.14	3.86
91.43	5.72	0.50	0.12	0.16	0.78
98.05	1.04	0.44	0.24	0.24	0.92
96.98	1.22	0.40	0.42	0.30	1.12

(Expressed as weight percentage)

Samples identified as "Mount Gambier Limestone"

### APPENDIX I

Sample Mass Balance Determination

BOREHOLE MIN 5

	REACTION	CONSTITUENTS (millimoles/litre)								
	Composition of Dissolved Salts		K ⁺	Ca ⁺⁺	Mg ⁺⁺	C1 ⁻	so ₄ =	нсо ₃		
		3.43	0.03	2.82	0.37	3.27	0.05	6.16		
1.	Dissolution of Dolomite						•			
	$Ca^{++} + Mg^{++} + 4HCO_3^- = CaMg(CO_3)_2 + 2CO_2 + 2H_2O$	3.43	0.03	2.45	0	3.27	0.05	4.68		
2.	Dissolution of Calcite									
	$Ca^{++} + 2HCO_3^- = CaCO_3 + CO_2 + H_2O$	3.43	0.03	0.11	0	3.27	0.05	0		
3.	Addition of Cyclic Salt				•					
	$0.86 \text{ Na}^{+} + 0.02 \text{K}^{+} + 0.02 \text{ Ca}^{++} + 0.10 \text{Mg}^{++} + \text{C1}^{-} + 0.05 \text{S0}_{4}^{=}$	0.62	-0.03	0.04	0.	0	-0.09	0		

### APPENDIX J

Special Analyses

(Cu, Cr, As, Nitrogen analyses, all concentrations in mg/l)

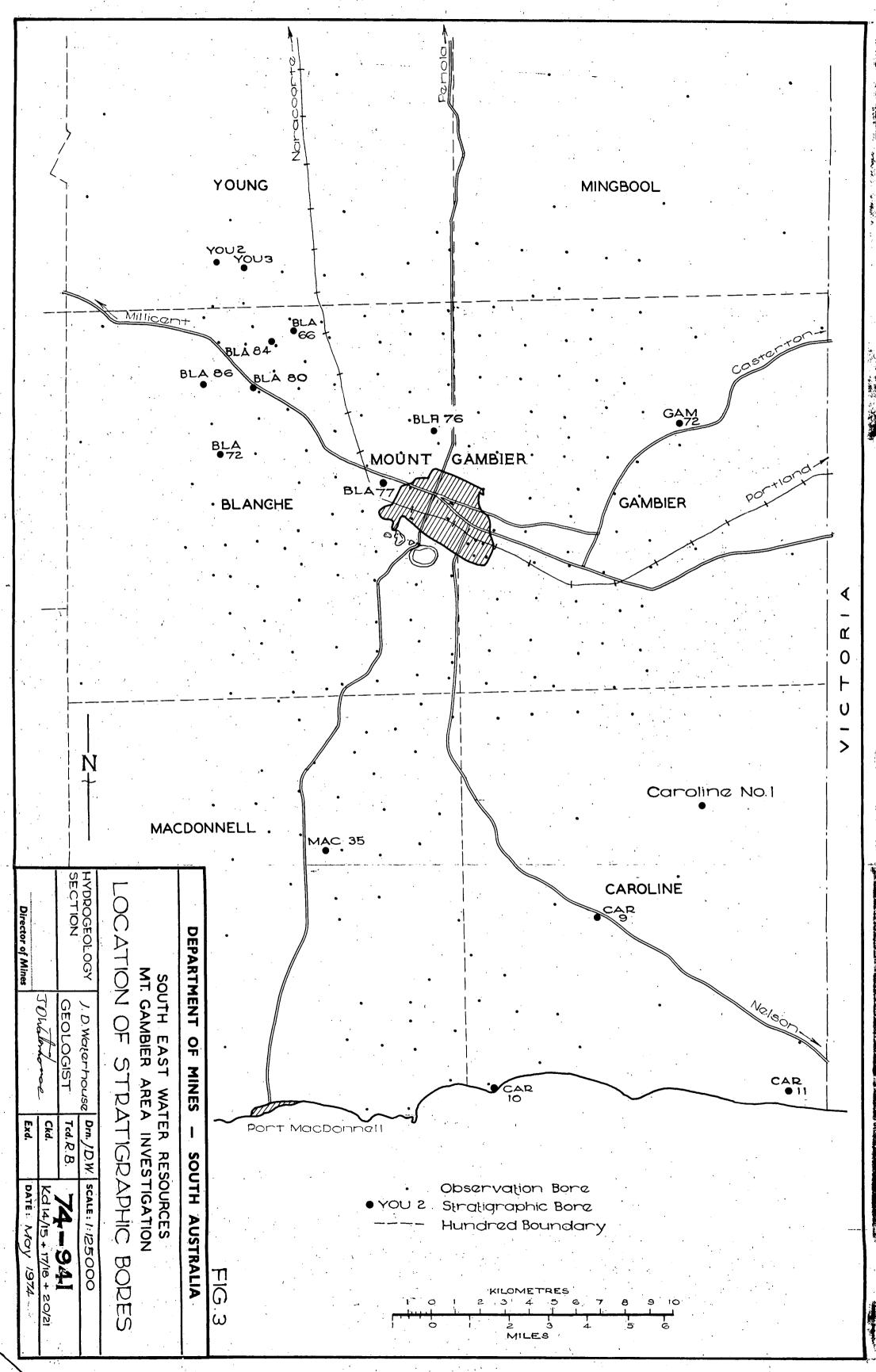
Bore	Nitrogen Free & saline	Nitrogen	Nitrite	Nitrate
BLA 5	0.005	0.6	0.01	70
BLA 6	<t 0.005<="" td=""><td>0.05</td><td>0.01</td><td>50</td></t>	0.05	0.01	50
BLA 8	0.005	0.08	<t 0.01<="" td=""><td>15</td></t>	15
BLA 16	<t 0.005<="" td=""><td>0.045</td><td>0.01</td><td>45</td></t>	0.045	0.01	45
BLA 17	0.025	0.05	0.01	55
BLA 18	0.005	0.09	0.01	285
BLA 20	<b>0.005</b>	0.04	0.01	50
BLA 21	0.02	0.05	0.01	10
BLA 22	0.02	0.035	<t 0.01<="" td=""><td>110</td></t>	110
BLA 27	0.045	0.02	0.01	41
BLA 28	102	19	0.4	17
BLA 29	0.065	0.05	0.01	25
BLA 30	0.005	0.09	0.01	70
BLA 31	0.005	0.135	0.01	225
BLA 38	0.005	0.02	<t 0.01<="" td=""><td>41</td></t>	41
BLA 49	0.025	0.08	0.01	110
BLA 40	0.005	0.065	0.01	27
BLA 41	0.005	0.11	0.02	250
BLA 42	0.025	0.05	0.01	65
BLA 52	0.01	0.045	0.01	45
BLA 50	2.25	0.56	0.05	3
BLA 53	0.06	0.025	0.01	0.5
BLA 67	0.065	0.04	0.22	38
BLA 76	0.005	0.02	<t 0.01<="" td=""><td>42</td></t>	42
BLA 77	0.01	0.04	<t 0.01<="" td=""><td>33</td></t>	33
BLA 81	0.04	0.025	0.01	17
BLA 82	0.005	0.045	0.01	143

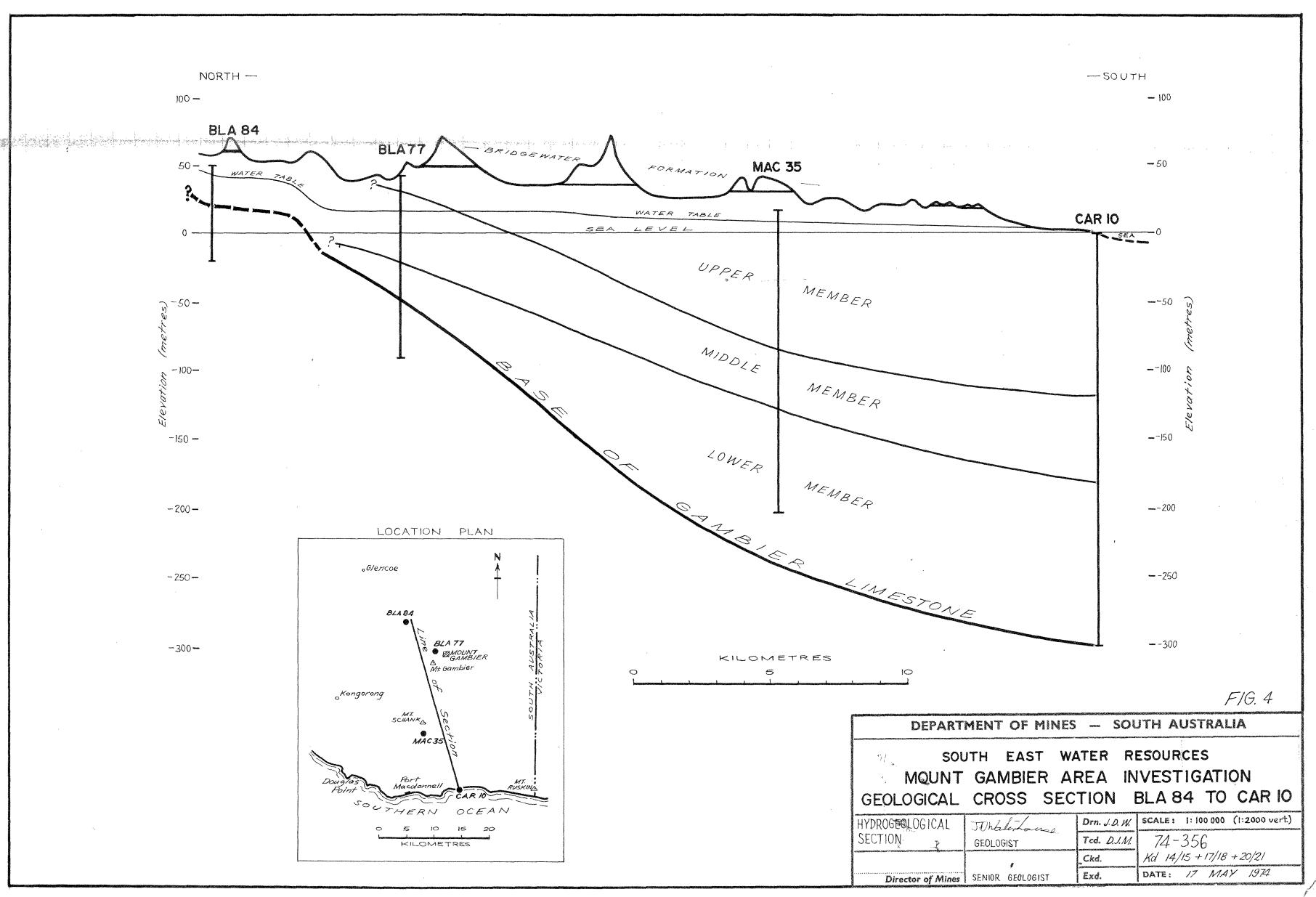
Bore	Nitrogen Free & saline	Nitrogen Albuminoid	Nitrite	Nitrate
CAR 9	0.01	0.05	0.02	9
CAR 10	0.01	0.035	0.01	1
CAR 11	0.02	0.065	0.01	5
GAM 7	0.02	0.08	0.02	7
GAM 8	0.005	0.085	<t 0.01<="" td=""><td>41</td></t>	41
GAM 9	0101	0.05	0.01	65
GAM 12	0.005	0.15	0.02	50
GAM 18	0.01	0.02	<t 0.01<="" td=""><td>27</td></t>	27
GAM 19	0.005	0.025	<t 0.01<="" td=""><td>80</td></t>	80
GAM 20	0.005	0.035	0.01	27
GAM 21	0.005	0.035	<t 0.01<="" td=""><td>32</td></t>	32
GAM 22	0.01	0.02	<t 0.01<="" td=""><td>43</td></t>	43
GAM 23	0.015	0.045	<t 0.01<="" td=""><td>60</td></t>	60
GAM 28	0.035	0.09	0.01	30
GAM 29	0.055	0.085	0.12	35
GAM 30	0.025	0.075	0.02	30
GAM 56	0.02	0.05	0.01	40
GAM 58	0.025	0.045	0.02	15
GAM 59	0.005	0.03	<t 0.01<="" td=""><td>25</td></t>	25
GAM 60	0.01	0.02	<t 0.01<="" td=""><td>37</td></t>	37
GAM 61	0.015	0.05	0.05	26
MAC 25	0.05	0.105	0.02	1
MAC 35	0.01	0.05	<t 0.01<="" td=""><td>10</td></t>	10

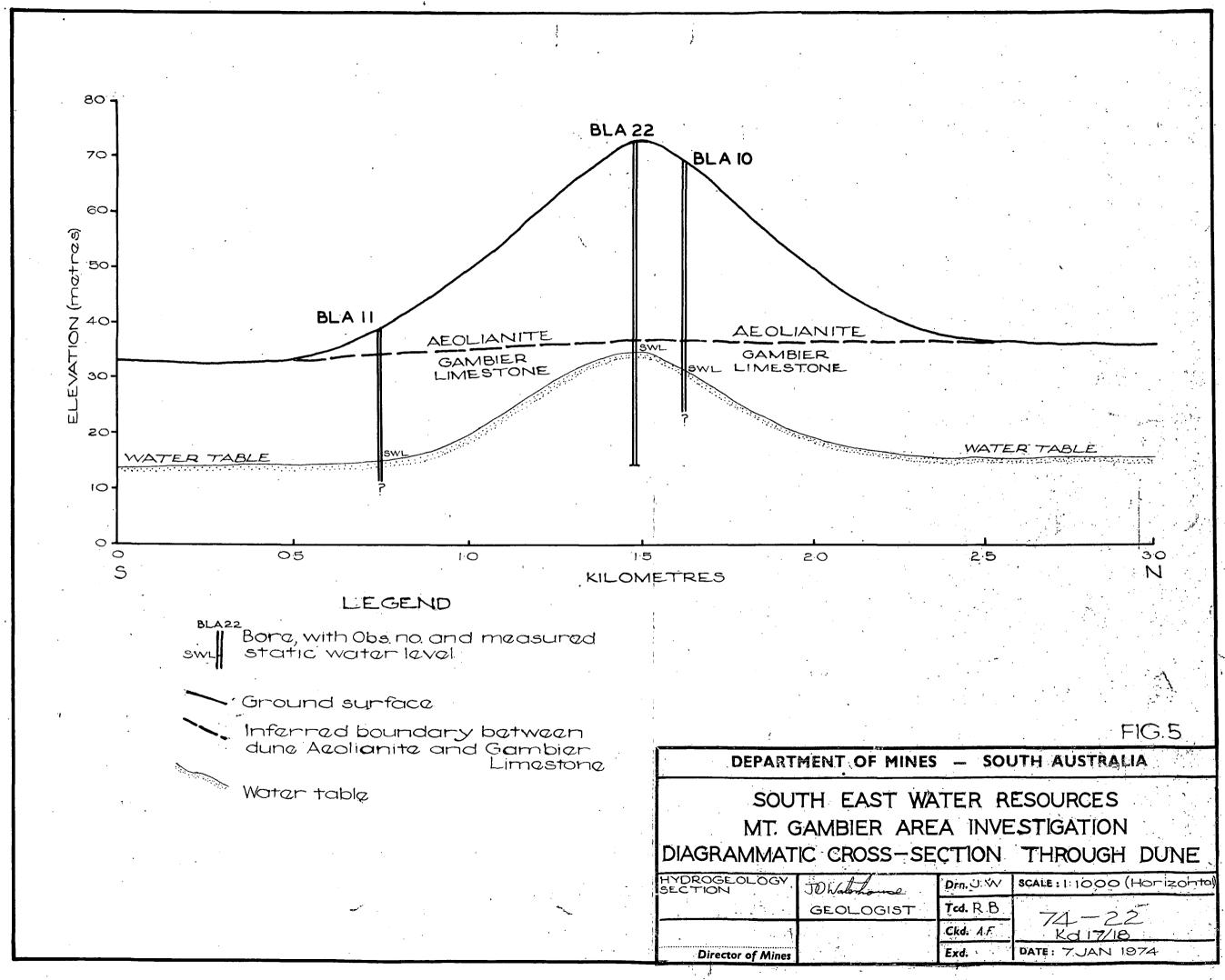
# CONSTITUENTS IN mg/l

Bore No.	Phenol	Copper	Chromium	Arsenic	
BLA 8	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
BLA 27	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
BLA 28	80,3	<t 0.02<="" td=""><td><t 0.02<="" td=""><td>0.005</td><td></td></t></td></t>	<t 0.02<="" td=""><td>0.005</td><td></td></t>	0.005	
BLA 38	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
BLA 39	<t 1<="" td=""><td>0.06</td><td><t 0.02<="" td=""><td>0.005</td><td></td></t></td></t>	0.06	<t 0.02<="" td=""><td>0.005</td><td></td></t>	0.005	
BLA 42	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
BLA 77	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td>0.005</td><td>•</td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td>0.005</td><td>•</td></t></td></t>	<t 0.02<="" td=""><td>0.005</td><td>•</td></t>	0.005	•
BLA 82	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
GAM 7	⊴ <t 1<="" td="" ∈=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
GAM 8	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
GAM 9	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td>0.005</td><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td>0.005</td><td></td></t></td></t>	<t 0.02<="" td=""><td>0.005</td><td></td></t>	0.005	
GAM 12	<t 1<="" td=""><td>0.26</td><td><t 0.02<="" td=""><td>0.005</td><td></td></t></td></t>	0.26	<t 0.02<="" td=""><td>0.005</td><td></td></t>	0.005	
GAM 19	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
GAM 23	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td>T 0.005</td><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td>T 0.005</td><td></td></t></td></t>	<t 0.02<="" td=""><td>T 0.005</td><td></td></t>	T 0.005	
GAM 56	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	
GAM 58	<t 1<="" td=""><td>-</td><td>-</td><td>-</td><td></td></t>	-	-	-	
GAM 59	<t 1<="" td=""><td><t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t></td></t>	<t 0.02<="" td=""><td><t 0.005<="" td=""><td></td></t></td></t>	<t 0.005<="" td=""><td></td></t>	

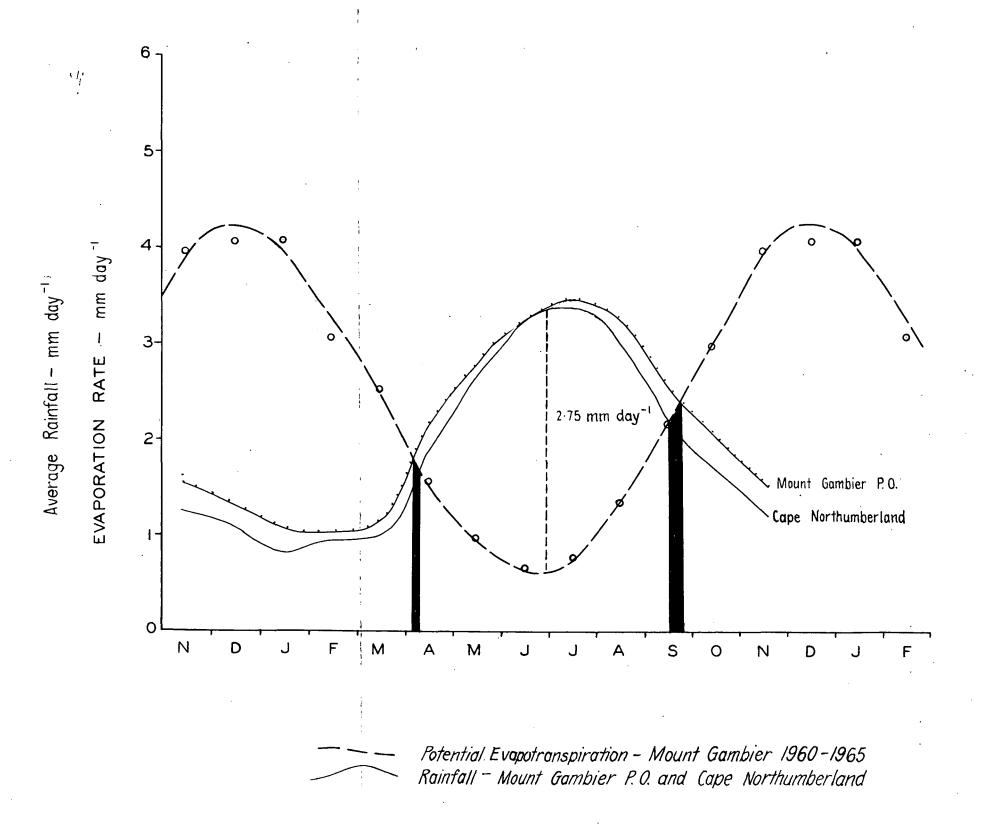
APPENDIX K


Bacteriological Analyses


DATE	DESCRIPTION		PROBABLE ORGANISMS L OF WATER	THE NUMBER FAECAL STREPT PER 100 ML OF	OCOCCI		COD mg/l	POLLUTION EXPECTED	COMMENTS	SAMPLING METHOD
<u> </u>		COLIFORMS	E. COLI	·				·		
2/11/72 30/10/72		absent	absent	. 2 4.	. •	9.6	20 20	Yes Metrop.	Windmill and trough. Surrounded by houses.	W/M P - mod. clean.
30/10/72	BLA 19 .	275	absent .	none			35	No	Adjacent Leg of Mutton Lake.	Bailed.
3/11/72	BLA 20	absent	absent .	none	,	9.2	15	Yes	Adjacent new houses and paddocks.	P
3/11/72 2/11/72	BLA 21 BLA 30 .	2 8	2	none 2		9.2 8.6	15 15	Yes Yes	Adjacent paddocks. Adjacent paddocks and	P
2/11/72	BLA 31 .	absent	absent.	. none		9.6	25	Yes	brickyards. Adjacent paddocks.	P P .
* 2/11/72	BLA 32	225	8	-80		9.4	25	Yes	Bore in house yard near dairy.	В
2/11/72	BLA 33	17	absent	20 .		9.4	25	Yes	Bore near recently occupied shack.	W/M
2/11/72 2/11/72	BLA 40 BLA 41	absent absent	absent absent	· 10		7.6 8.2	20 - 30	No Yes	Adjacent paddocks. Adjacent paddocks.	P P - slightly
*31/10/72	BLA 48	30	8	`\60		9.0	20	Yes	Windmill and trough.	silty. P - Well.
*31/10/72 1/11/72	BLA 49 BLA 52	1 600 absent	13 absent	400 none		8.2	20 15	Yes No	Between house and dairy. Adjacent paddocks.	B P
30/10/72 * 3/11/72	BLA 56 BLA 62	900	absent	none		9.1	25	No	Adjacent paddocks.	В
* 1/11/72	BLA 65	30 · 11	. 2	30 68			15 ; 15	Yes No	Adjacent house and dairy. Adjacent paddocks.	P - mod. clean. P - 2 mins.only
31/10/72 31/10/72	BLA 69 BLA 71	20 absent	absent absent	none none		5.8 9.2	25 30	No No	Adjacent paddocks. Adjacent pines.	P - short time.
1/11/72	BLA 72	absent	absent	none		8.5	5	No.	Adjacent pines and paddocks.	P - short time.
*30/11/72	BLA 78	75 ·	. 8	20		10	15	Yes	Unequipped, uncased, near	
31/10/72	BLA 80	absent	absent	none		6.6	10	Yes	?disused stockyards. Adjacent paddocks, house	P - 25 min. on
1/11/72	BLA 81	2	absent	none -		9.2	15	No	50 m to south. Adjacent paddocks,	P - short time.
						_			house 20 m to east.	P
30/10/72 30/10/72	BLA 84 BLA 85	14 absent	ll absent	none 2		6.5	15 15	No No	Adjacent paddocks. Surrounded by pines.	P P
*31/10/72 1/11/72	BLA 86 . BLA 87	35 absent	35 absent	10 none		8.9 8.5	25 15	No No	Surrounded by pines. Adjacent paddocks.	P - short time P - short time
31/10/72	BLA 89	17	absent	none		7.5	15	Yes	Windmill and trough.	В
15/11/72	CAR 9	absent	absent	4		<b>б.</b> 8	10	No	D of M stratigraphic bore.	P
15/11/72 15/11/72	CAR 10 CAR 11	absent absent	absent absent	none 2		5.7 3.8	35 50	No No	D of M stratigraphic bore. D of M stratigraphic bore.	P
16/11/72	CAR 17	4	4	1 100		8.9	10	No '	In pines, adjacent ruin.	В
16/11/72	CAR 18	50	50	890		5.5	10	Yes	Adjacent Carba Treatment Plant and pines.	В
15/11/72 16/11/72	CAR 19 CAR 20	absent absent	absent absent	20 none		9.8	5 10	No Yes	Adjacent pines, paddocks. Adjacent trough,	В .
*16/11/72			70				15	•	windmill.	B B
15/11/72	CAR 21 CAR 22	70 absent	absent	72 none		8.8	10	Yes No ·	Caroline Sinkhole. Adjacent paddocks.	P
16/11/72	CAR 23	900	550	270		0.5	40	Yes	Adjacent ruin and paddocks.	P - Well - dead sheep last ye
16/11/72	CAR 24	2	absent	6		7.6	1.5	Yes	Windmill trough, shearing shed.	В
						1			,	
30/10/72	GAM 6	4	absent	20	-	-	30	Yes	Windmill and trough adjacent old house, dairy.	В
8/11/72	GAM 7	13	absent	150		9.0	10	No	Adjacent paddocks.	В
7/11/72	GAM 8	absent	absent	. Я		10.0	10	No	Adjacent paddocks, houses to south.	P
7/11/72 7/11/72	GAM 9 · GAM 12	absent absent	absent absent	. 8 14		9.0 9.5	10 · 15	Yes No	Surrounded by stockyards. Adjacent paddocks.	P P
8/11/72	GAM 17	absent	absent	none		7.5	20	Yes	Windmill and trough.	W/M - pumping strongly.
9/11/72	GAM 18	absent	absent	10		10.6	15	No	Adjacent paddocks.	P - short time.
7/11/72	GAM 19	absent	absent	44	`	9.6	20	Metrop.	On reserve, surrounded by houses.	P
9/11/72 9/11/72	GAM 20 GAM 21	absent absent	absent absent	none none		9.9 8.9	10 10	No No	Adjacent paddocks. Adjacent paddocks.	P - minor silt. P - minor silt
9/11/72 7/11/72	GAM 22 GAM 23	absent absent	absent absent	none 24		10.4	10 15	No No	Adjacent paddocks. Adjacent paddocks.	P P - poor sample
13/11/72	GAM 28	8 .	· 5	190	,	10.0	15	No	Adjacent paddocks.	P - short time
*13/11/72 *13/11/72	GAM 29 GAM 30	1 800+ 130	5 13	3 400 60	٠	9.4 9.4	10 15	No No	Adjacent paddocks. On racecourse.	P - short time P
14/11/72 8/11/72	GAM 37 GAM 42	40 absent	absent absent	. 8 none	1	4.0 7.8	15 20	No . Yes	Adjacent paddocks. Windmill and trough.	P W/M
14/11/72	GAM 46	absent	absent	120		2.8	10	No	Adjacent paddocks.	B P
14/11/72	GAM 47 GAM 48	225 350	20 11	46 46		2.9 6.0	10 30	Yes No	Windmill and trough. Adjacent paddocks.	В
13/11/72 8/11/72	GAM 52 GAM 56	absent 5	absent 5	12 6		6.5 9.2	15 10	No Yes	Adjacent paddocks. Adjacent state sawmill.	P P
8/11/72	GAM 58	absent absent	absent absent	none 70		8.4	10 15	Yes Yes	Adjacent state sawmill. Adjacent state sawmill.	P P - mediocre
8/11/72	GAM 59									sample.
9/11/72 10/11/72	GAM 60 GAM 61	absent Absent	absent absent	. none 500		9.9	10 10	No No	Adjacent paddocks. Adjacent paddocks.	P - short time
13/11/72	GAM 67	absent	absent	6		9.6	15 15	No Yes	Adjacent paddocks. Earl's Cave.	B P - discoloure
15/11/72	MAC 25	35	35	36			20	No	Paddocks adjacent.	water.
16/11/72	MAC 35	absent	absent	2		5.0	20	140	. acaoena aujacene.	-
	MTN .		absort	none		3.9	15	No	Unequipped bore in	
14/11/72	MIN 6	absent	absent				15	No	potato paddock.	P B
14/11/72	MIN 7	7	. 5	30		3.3	13	NO	Adjacent paddocks.	
	`.						10	No	Surrounded by since	ъ.
30/10/72 30/10/72	YOU 2 YOU 3	35 2	absent absent	none none		-	10 10	No No	Surrounded by pines. Adjacent pines,	Discharge state
,,									paddocks.	P - short time.


٠.

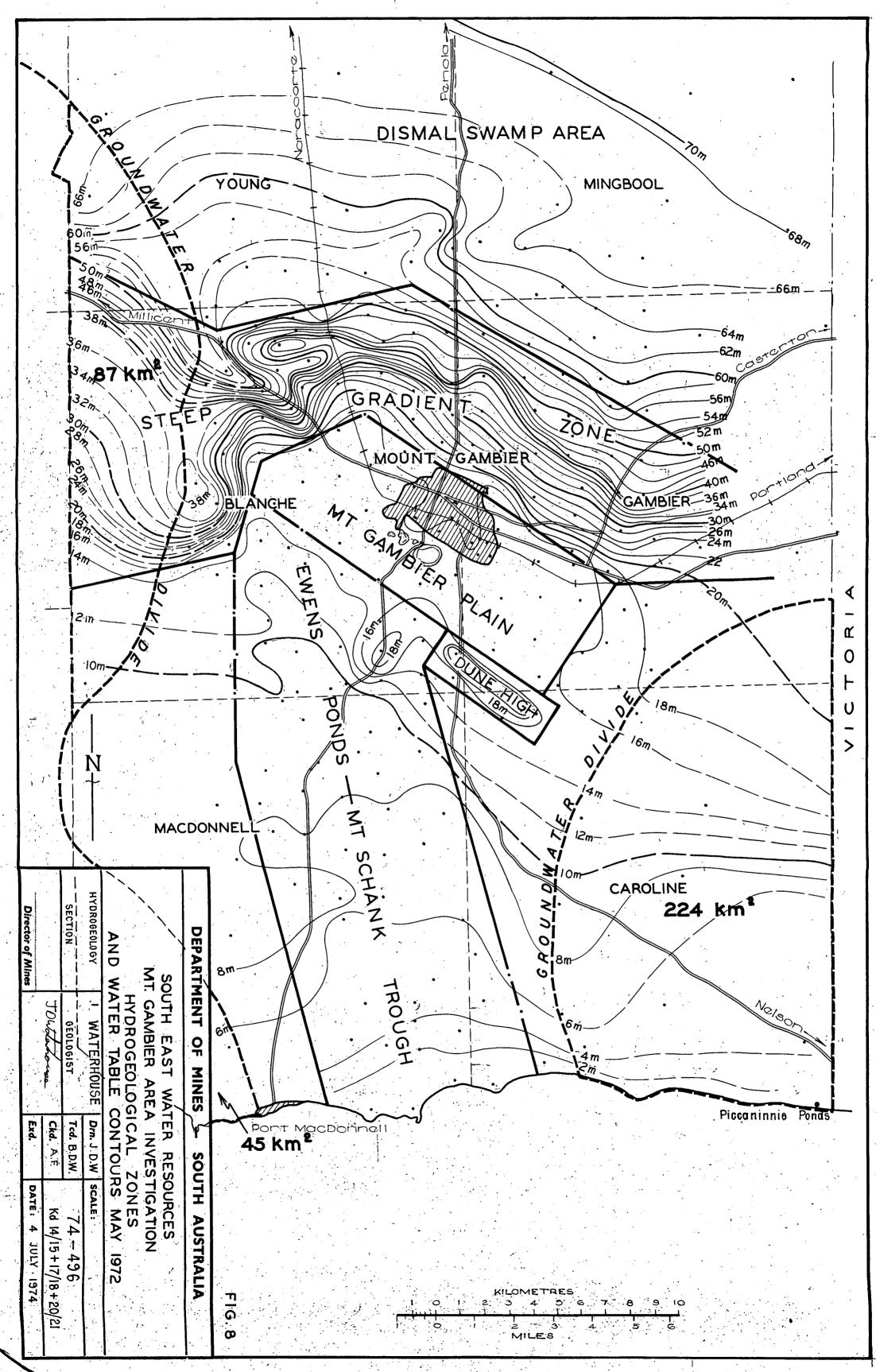


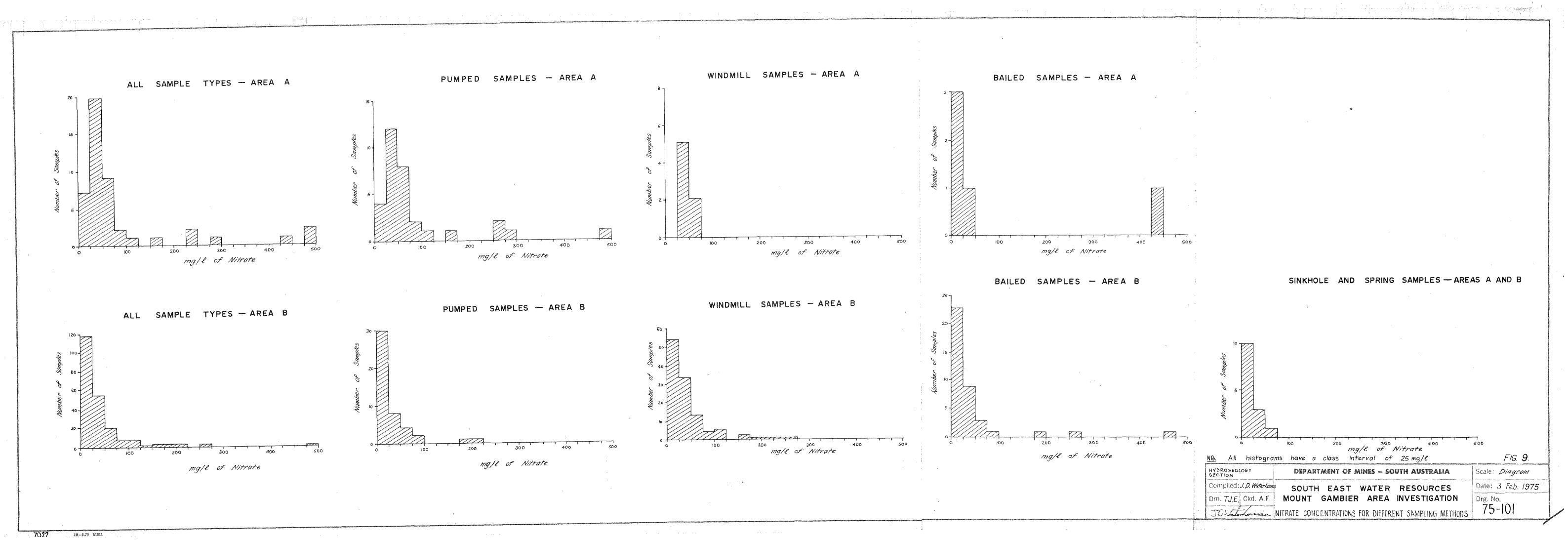



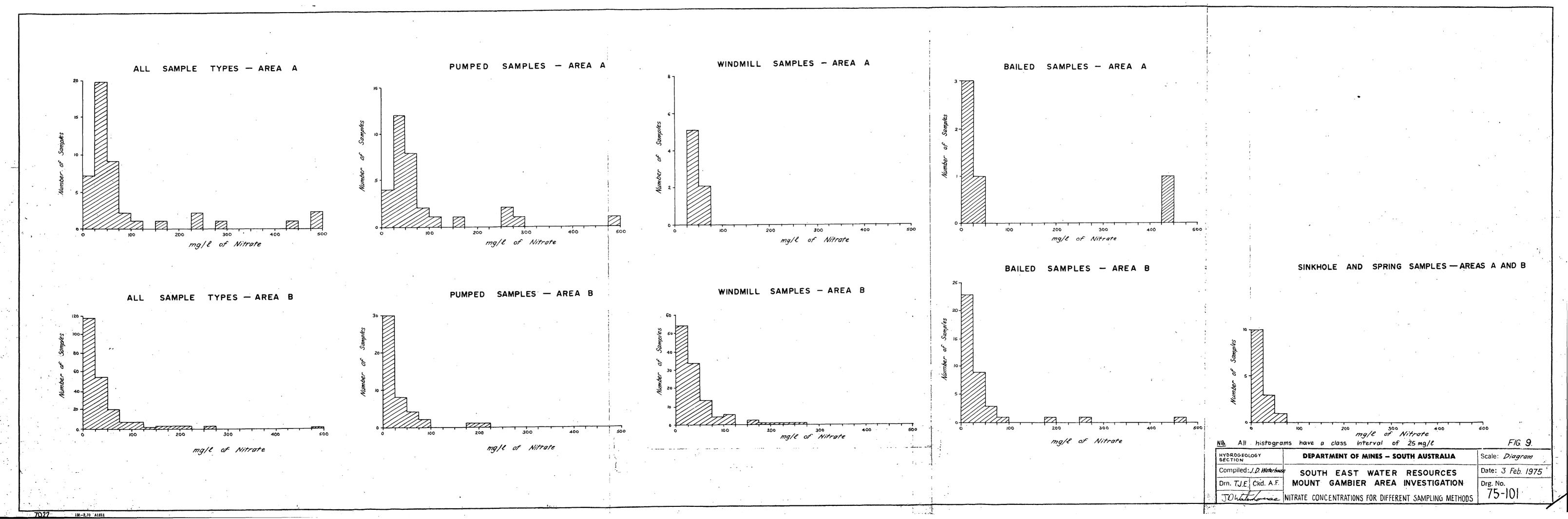


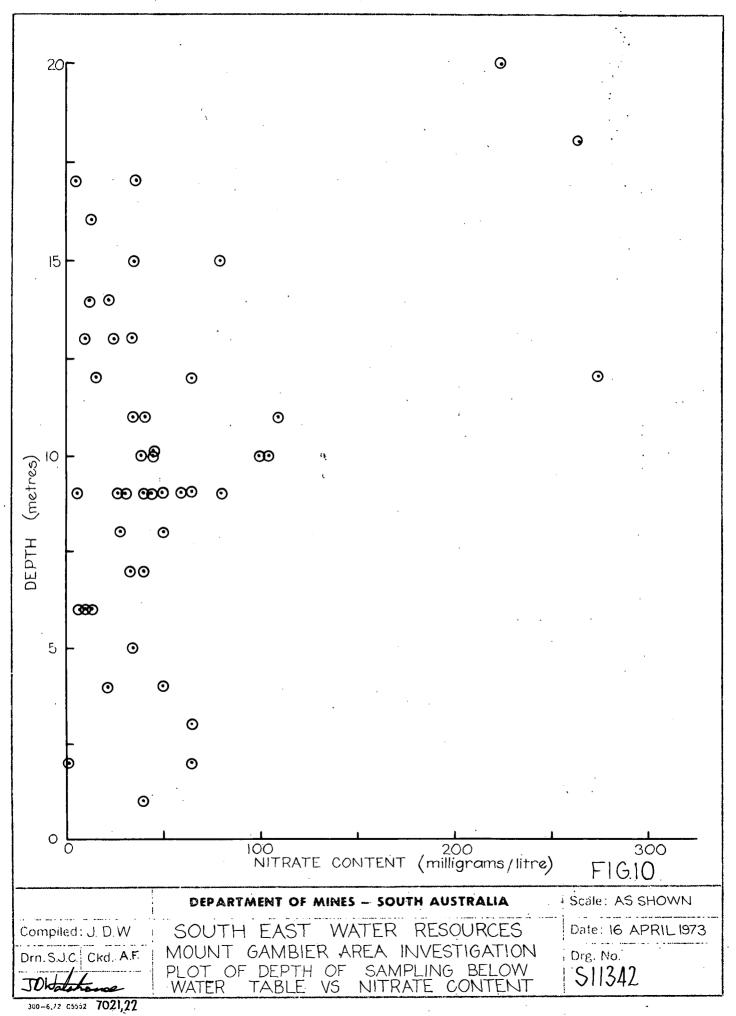


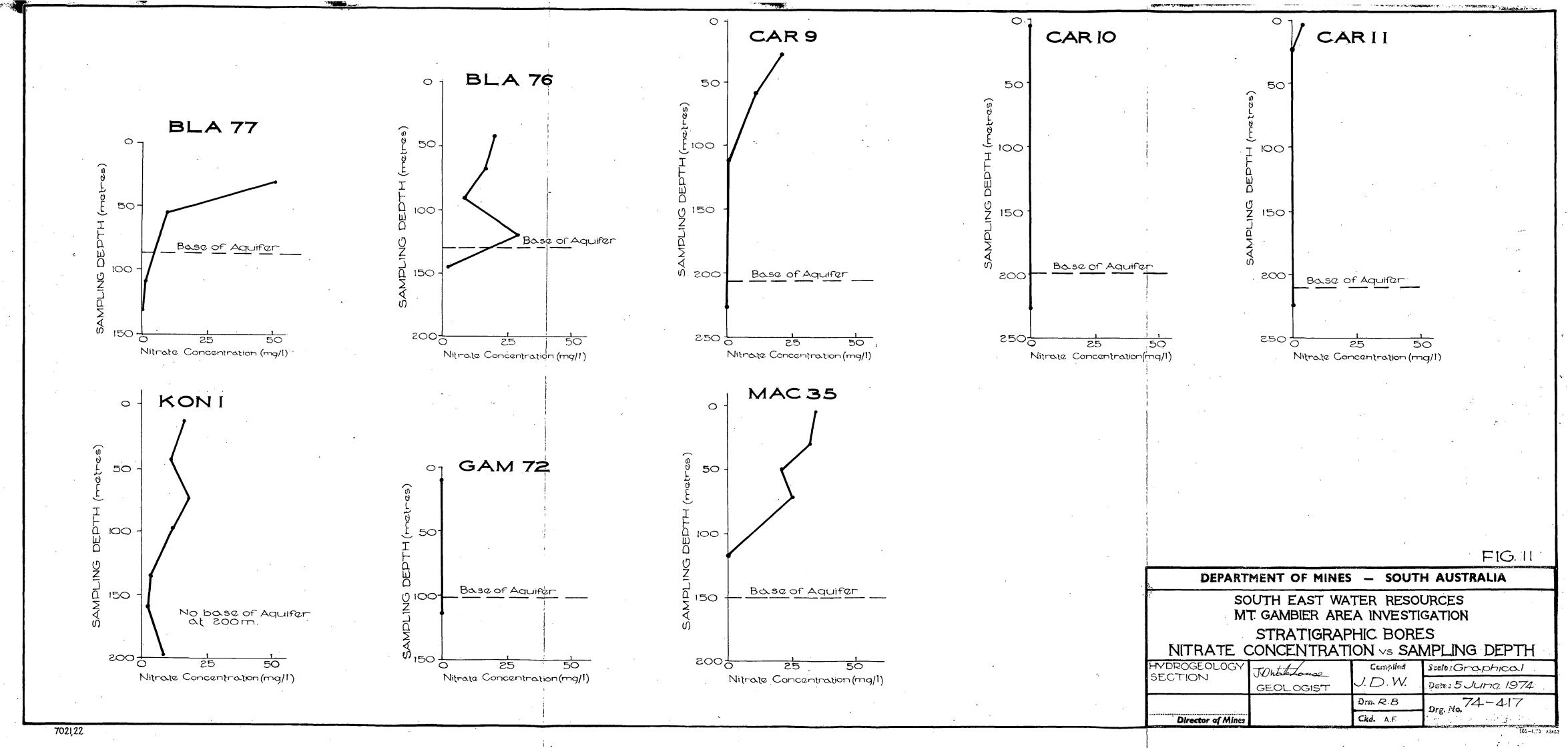


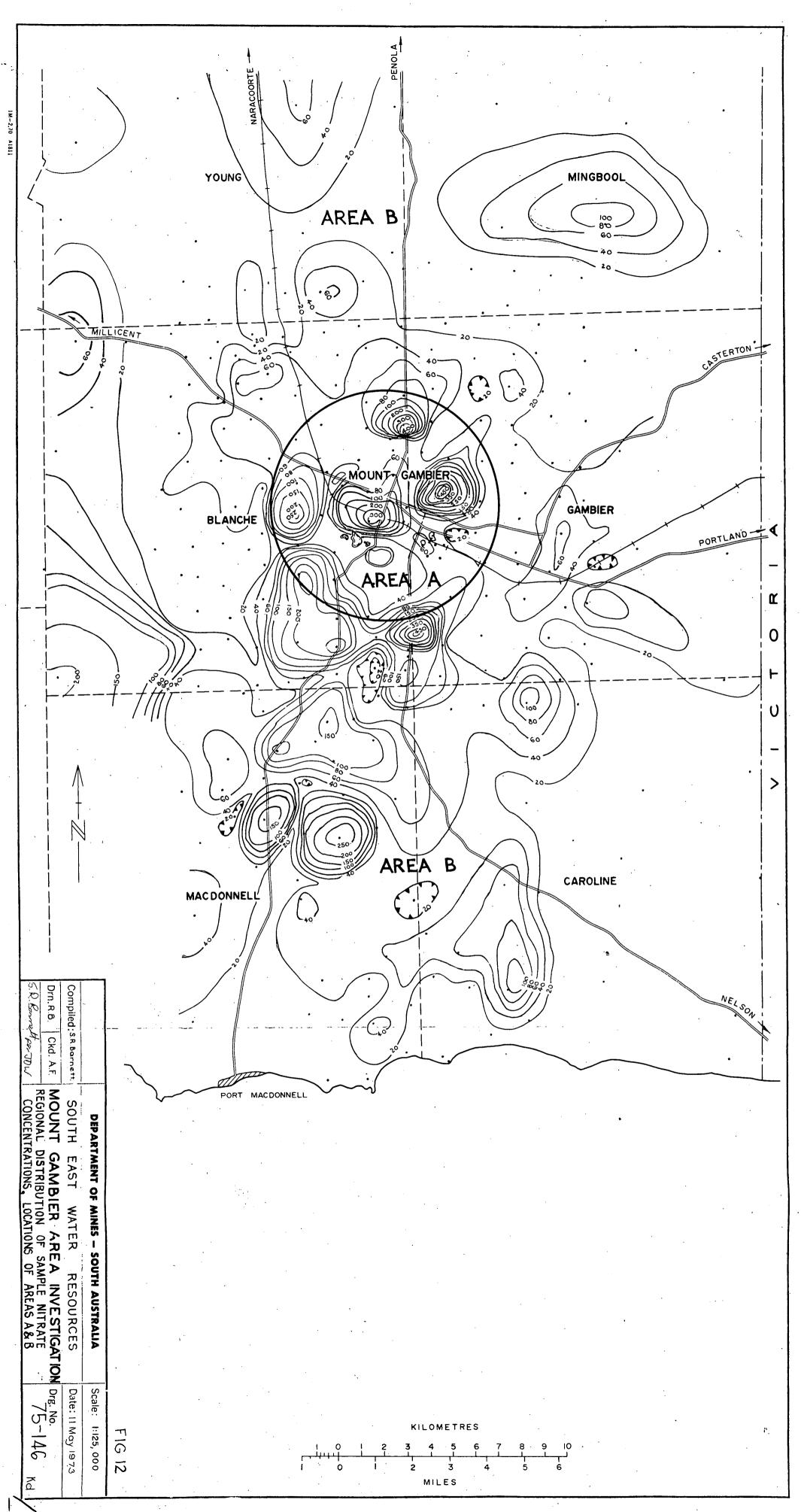



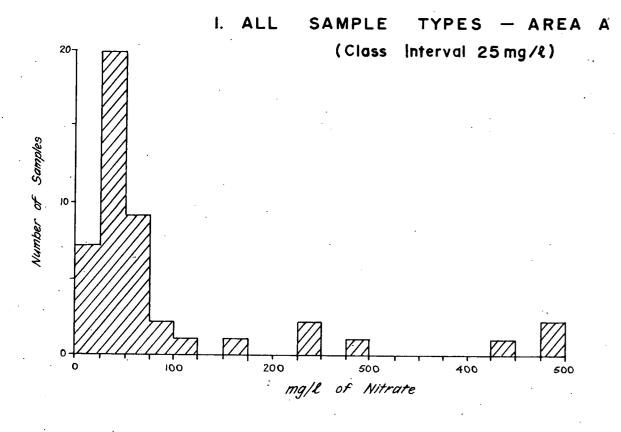



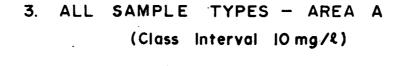


Potential Evapotranspiration from grassland (after Holmes and Colville, 1970) FIG. 7

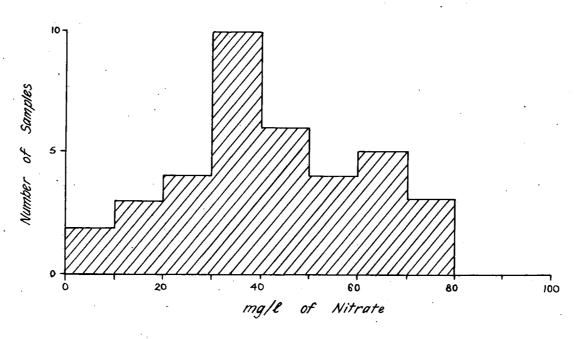

HYDROGEOLOGY SECTION	DEPARTMENT OF MINES - SOUTH AUSTRALIA	Scale: Diagram
Compiled; J. D. W.	SOUTH EAST WATER RESOURCES MOUNT GAMBIER AREA INVESTIGATION	Date: 4 Feb. 1975
Drn. TJE Ckd.	POTENTIAL EVAPOTRANSPIRATION FROM GRASS-	Drg. No.
J. O. WaterLouise	LAND AND AVERAGE MONTHLY RAINFALLS	75-98

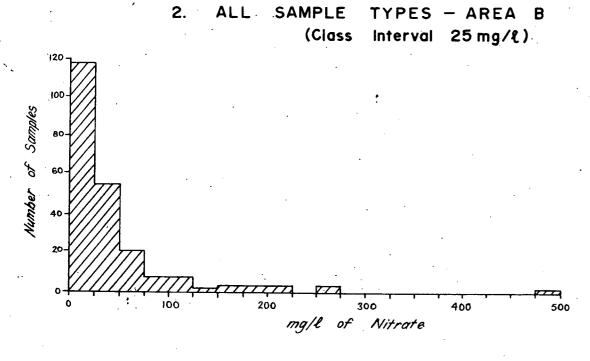

7022

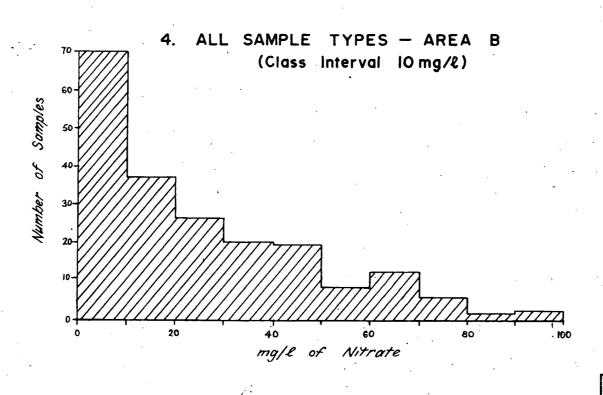













		F/G. <b>/3</b> .	
HYDROGEOLOGY SECTION	DEPARTMENT OF MINES - SOUTH AUSTRALIA	Scale: Diagram	
Compiled: J.D. Waterhous	SOUTH EAST WATER RESOURCES	Date: 4 Feb. 1975	
Orn. T.J.E. Ckd. A.F.		Drg. No.	
Johnstonse	HISTOGRAMS OF NITRATE CONCENTRATIONS, AREAS A&B	75-100	

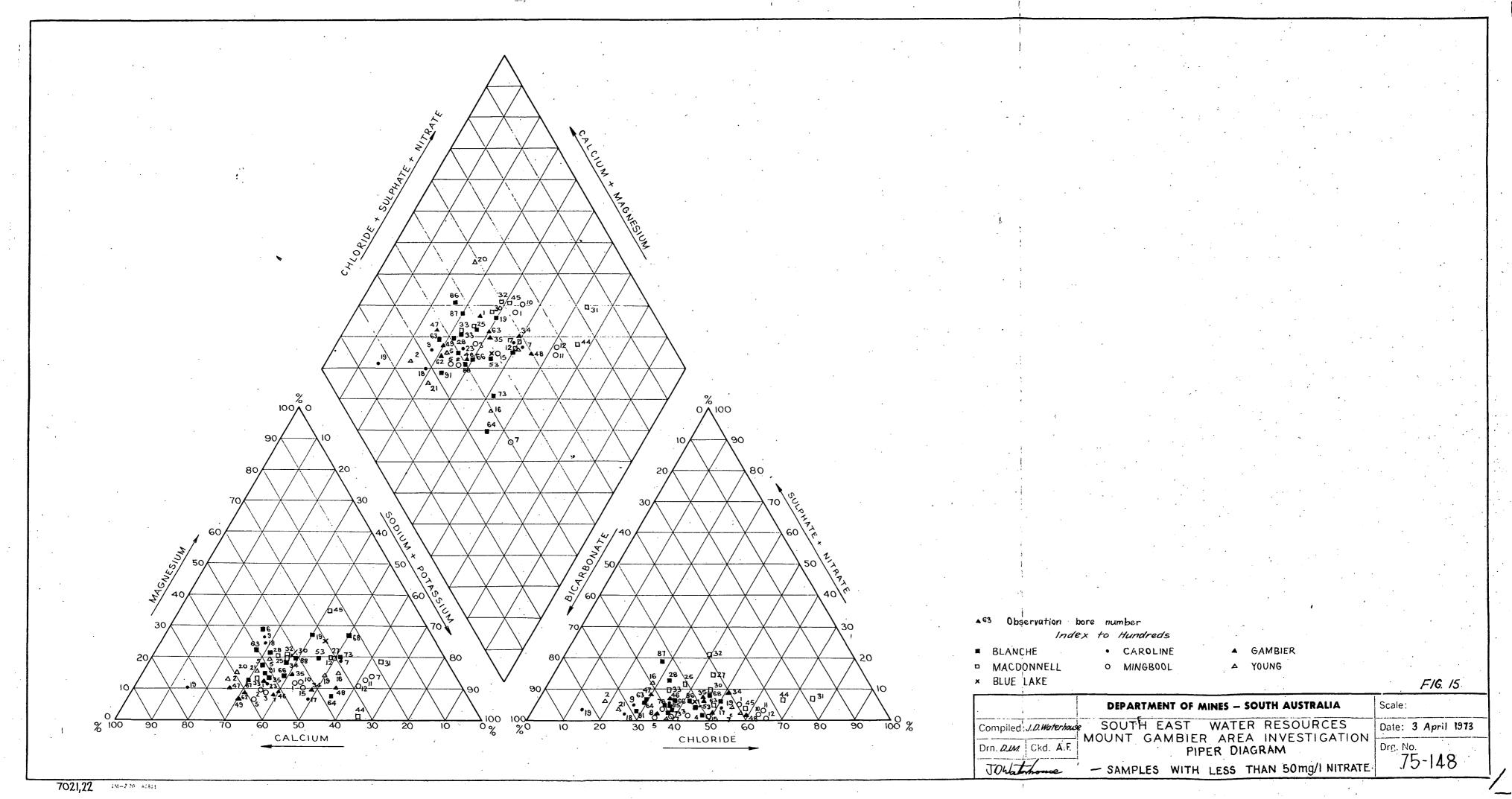
# 

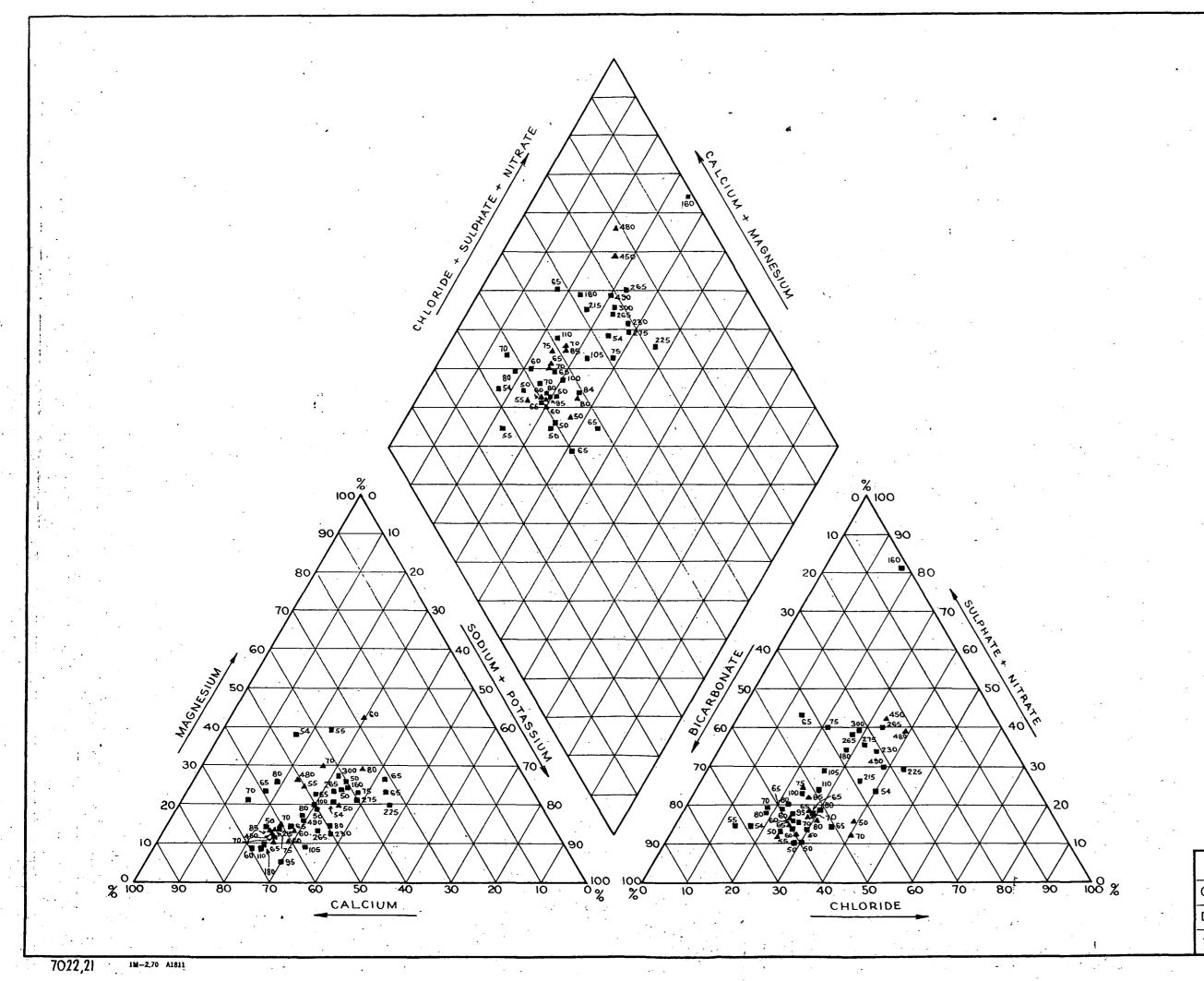
1.2

log x

2.2

2.4


2.6


# LEGEND

Curve No.	Population
1	Population, Total
2	Samples from bores likely to be polluted
3	Samples from bores not likely to be polluted
4	Samples from Area A
5	Samples from Area B
6	Samples from Mount Gambier Metropolitan Area
· .	

FIG. 14

1		
HYDROGEOLOGY SECTION	DEPARTMENT OF MINES - SOUTH AUSTRALIA	Scale: Diagram
Compiled: J. D. W.	SOUTH EAST WATER RESOURCES MOUNT GAMBIER AREA INVESTIGATION	Date: 4 Feb. 1975
Drn. TJE Ckd.	NORMALIZED DISTRIBUTIONS OF SAMPLE	Drg. No.
JOhnste Longe	NITRATE CONCENTRATIONS	75-99





95 Composition: number refers to nitrate in ma/l

Hd. of Blanche sample

A Hd. of Gambler sample

FIG: 16

		F10.10
	DEPARTMENT OF MINES - SOUTH AUSTRALIA	Scale:
Compiled: J.D. Waterhouse	SOUTH EAST WATER RESOURCES	Date: 3 April 1973
Drn. DJM, Ckd. A.F.	MOUNT GAMBIER AREA INVESTIGATION HUNDREDS OF BLANCHE AND GAMBIER SAMPLES WITH GREATER THAN 50 mg/l of NITRATE	Drg. No.
TOLET Louise	PIPER DIAGRAM	75-149

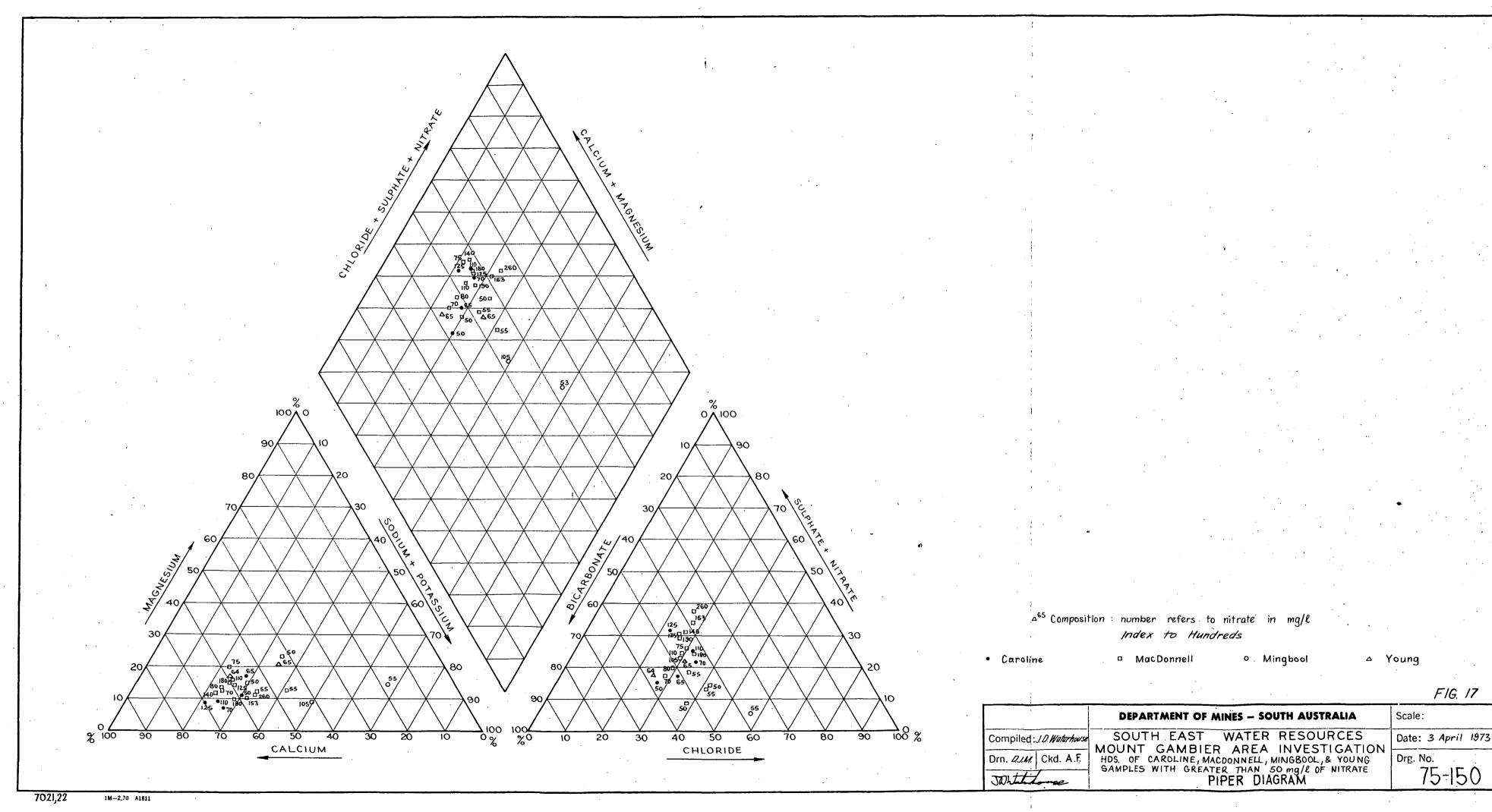
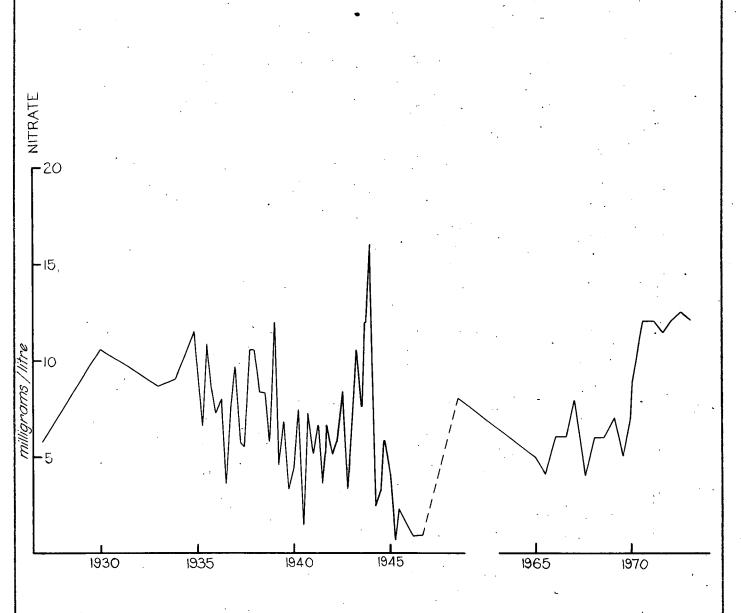
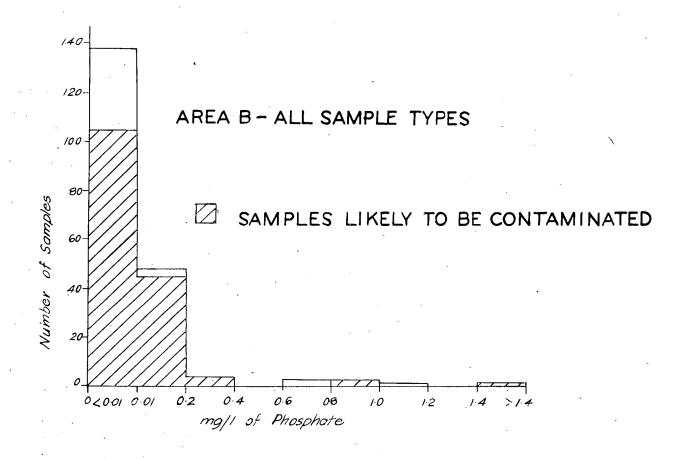
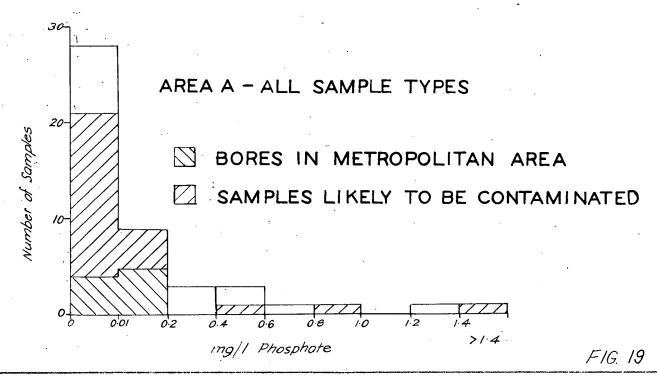




FIG. 17


75-150




Note: Up to 1945 values were reported as ammonia, but have been recalculated as nitrate using the formula below.

$$NO_3 = \frac{62}{17} NH_3$$
 (in milligrams/litre)

•		FIG. 18
	DEPARTMENT OF MINES - SOUTH AUSTRALIA	Scale. AS SHOWN
Compiled: J. D.W.	SOUTH EAST WATER RESOURCES	Date: 16 APRIL 1973
Drn.S.J.C. Ckd. A.F.	MOUNT GAMBIER AREA INVESTIGATION	Drg. No.
JOhale 300-6,/2 C5552 7021,22	NITRATE CONCENTRATION IN BLUE LAKE WATER	S11343



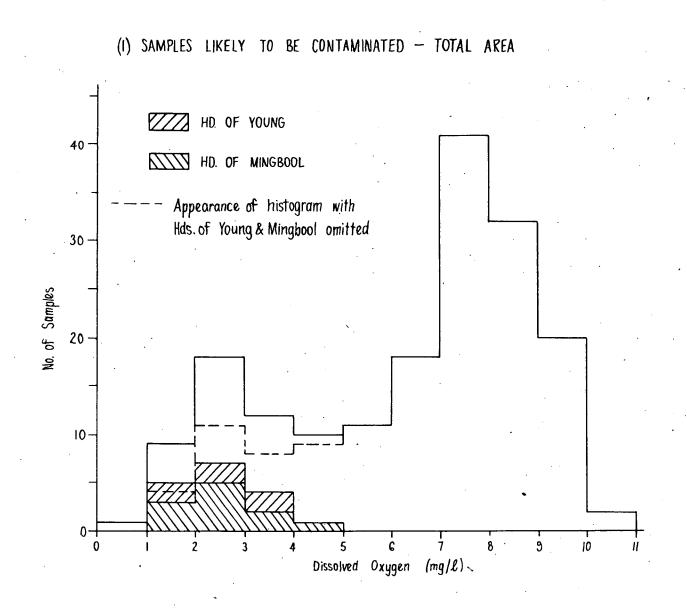


HYDROLOGY SECTION

DEPARTMENT OF MINES - SOUTH AUSTRALIA

Scale. Diagram

Compiled: J.D. Waterhouse


Drn. oww Ckd A.E.

SOUTH EAST WATER RESOURCES
MOUNT GAMBIER AREA INVESTIGATION
PHOSPHATE CONTENT OF SAMPLED WATER

Date: /3 Mar. 1973

Org. No. S11345

702122



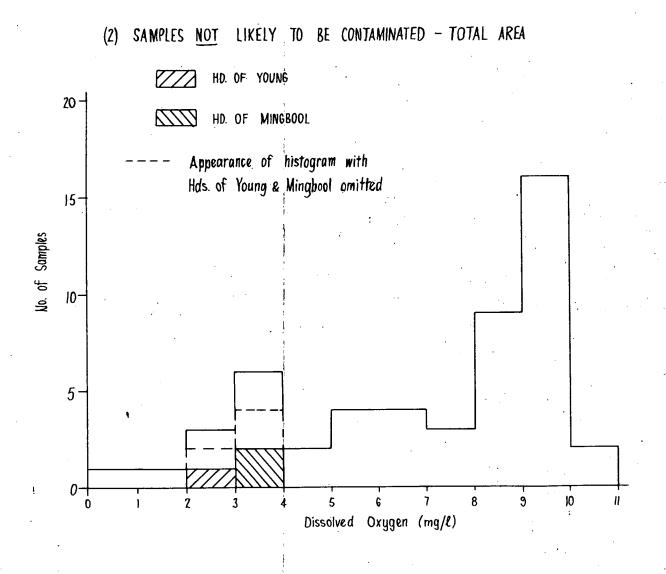
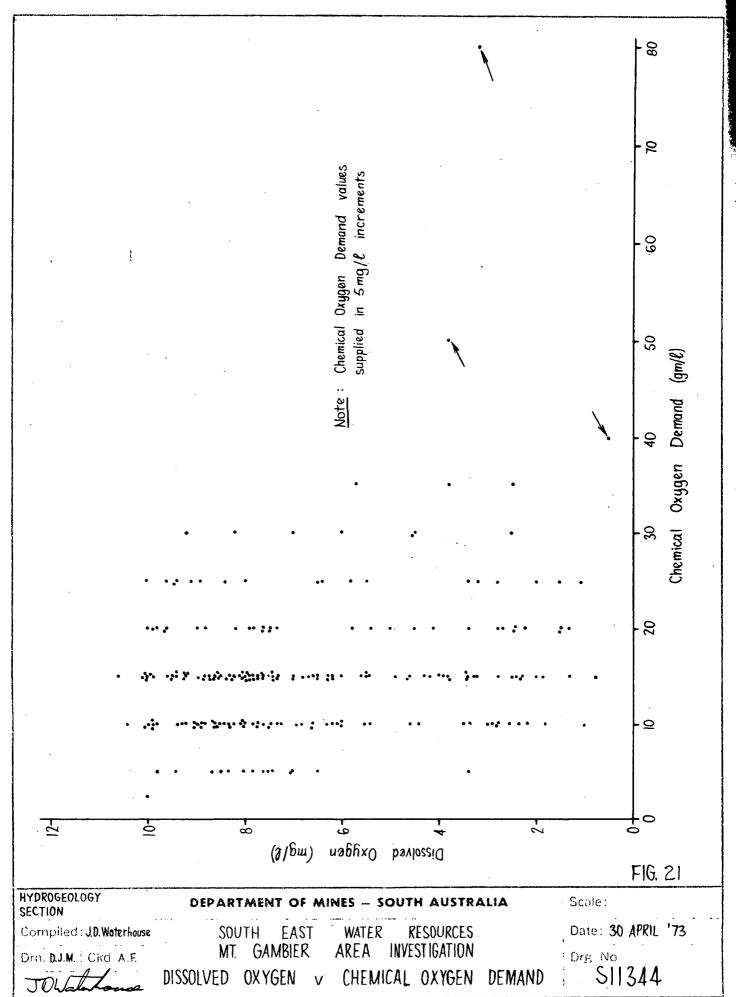
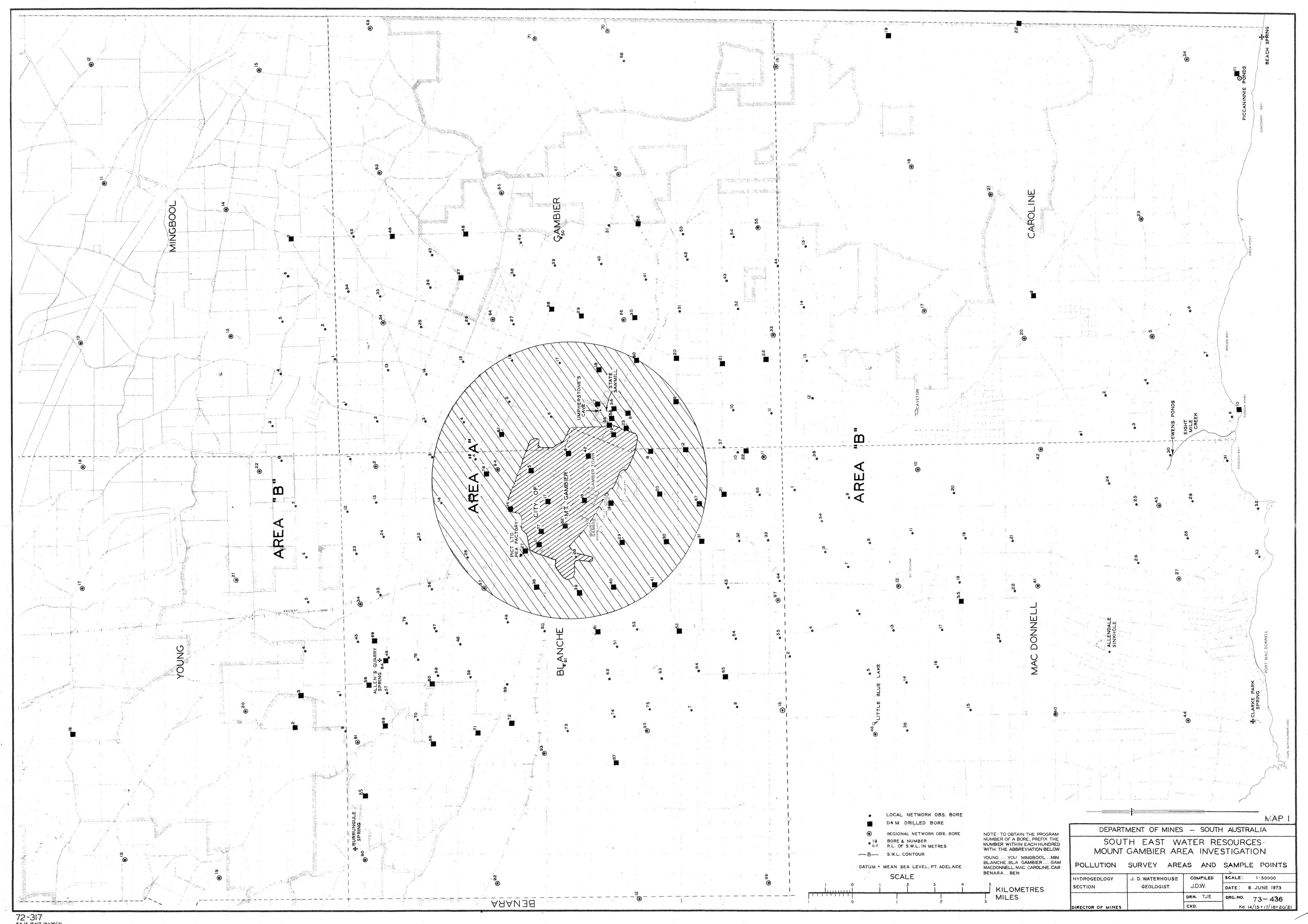



FIG. 20

HYDROGEOLOGY SECTION Compiled JD Waterhouse Drn. D.J.M. Ckd A.E.


DEPARTMENT OF MINES - SOUTH AUSTRALIA

WATER RESOURCES AREA INVESTIGATION SOUTH EAST MT. GAMBIER


DISSOLVED OXYGEN CONTENT OF SAMPLED WATER

Date: 30 APRIL '73 Dre. No. 75-147

Scale:



300- 6 12 C5552 7021,22

