DEPARTMENT OF MINES SOUTH AUSTRALIA

RIB 71/127

GEOLOGICAL SURVEY

TARCOOLA-ALICE SPRINGS RAILWAY BALLAST SEISMIC SURVEY REPORT NO. 2: ROBIN RISE TO MABEL CREEK

Client: COMMONWEALTH RAILWAYS

by

R.G. NELSON

GEOPHYSICIST

EXPLORATION GEOPHYSICS SECTION

Rept.Bk.No.71/127

TARCOOLA-ALICE SPRINGS RAILWAY BALLAST SEISMIC SURVEY REPORT NO. 2: ROBIN RISE TO MABEL CREEK CURNAMONA AND MURLOCOPPIE 1:250,000 sheet areas RIB 71 127

Client: COMMONWEALTH RAILWAYS

by

R.G. NELSON GEOPHYSICIST EXPLORATION GEOPHYSICS SECTION

Contents	Page
Abstract	11
Introduction	1
Geology	1
Physiography	3
Previous Geophysical Work	4
Camp Arrangements	4
Equipment and Methods Used	5
Results	5
Conclusions	8
Appendix I: Petrographic description of	11
rock from Coober Pedy Basement Ridge.	
Table I: Seismic Results.	

Plans

Plan No.	<u>Title</u>	Scale
71-689	(Location of Traverses - (Coober Pedy Ridge and Robin Rise) As shown
71-690	(Location of Traverses - (Mabel Creek) As shown
71-686	General Basement Trends	As shown
S 9387	Seismic Depths to Basement	As shown
62-677	Borehole Information	As shown
71-687	Coober Pedy Ridge - Magnetic Traverse	As shown
S 9388	Log of Hole Drilled at CPB7	As shown
71=688	Coober Pedy Ridge - Depths to Basemen	As shown

DEPARTMENT OF MINES SOUTH AUSTRALIA

D.M. No.506/71 Rept. Bk. No. 71/127 G.S. No. 4702

TARCOOLA-ALICE SPRINGS RAILWAY BALLAST SEISMIC SURVEY REPORT NO.2: ROBIN RISE TO MABEL CREEK CURNAMONA and MURLOOCOPPIE 1:250.000 sheet areas.

ABSTRACT

A shallow seismic refraction and ground magnetic survey of areas between Robin Rise and Mabel Creek was made in January, 1971. Regions of inferred near-surface crystalline basement outlined in this survey lie 5 miles south of Robin Rise, 20 miles south of Mabel Creek homestead and in areas immediately to the north of Mabel Creek homestead. Basement is equated with a high-speed refractor having a velocity of 18,000 feet/second. This has been confirmed on the so-called Coober Pedy Ridge by rotary drilling.

INTRODUCTION

The aims and scope of this survey were basically similar to those outlined by the author in a previous report on the Perfection Well area (Nelson, 1971). Target areas of presumed shallow basement, selected on the basis of previous seismic, aeromagnetic and gravity work, were investigated in finer detail in the hope that workable ballast sites for the proposed Tarcoola - Alice Springs standard gauge railway line could be found. The areas of interest are shown in Plan No. S.9387 (after Milton, 1969).

GEOLOGY

The Pre-Cambrian crystalline basement in this area forms part of the Gawler Craton (Thomson, 1970) of probable

Protorosole (Carpentorien) new. Mechan (op.ele.) has discussed this in terms of general because trease and its approximate outlines are shown in Plan II. 71-666.

The Pro-centulan tendents overless by Palacente (Pomilan) and Econole colliments. The Perilan addizants are confined to the deeper parts of basins and complet of cartenacous and coaly anchor (No. 1952).

The Rescole ecileents are represented by file to ederce furnished each control of the control of the form of the control of the form the first of the form the first of the first of the form of the first of the fir

According to Jeems (1959) allicitiestics of Grotecesus wheles occurred during the early and the late filesons with transcribes of the newlicet cult and chales in the incurvaling period. Process day colls dopend for that character on the extent of transcribes of the Orethopone profiles.

over tubleland areas (preserved Pliceaus topography) the coll is a deep reddied-brees elsy with a surface covering of billy globers. Orabbolus have developed and the coll contains heavy (preum but no line. A few mass dumes (denived entirely from Pliceaus alicetical) occur ever these tubleland clays. Such of these over noted on the Oceber Fody Midge (see later). This established on the Coeber Fody Midge (see later). This exhibition is the blessons ables intercepted while Crilling shotheles in these areas indicate that the exter table was ruch shothers until quite recently. The soil type ever the tableland is there as Coeber Fody soil.

Further couch where (post trunsation of the Filocene topography has occurred the soil is easily, the rout being derived from expecte Furnacia austriance (Diythesiele Group) as well as from the Filocene calls. Sandhille are numerous in this area. The soil type here is known as Wirraminna soil.

Ker (op.cit) has discussed basin trends in the area. It is noteworthy that he pointed out that No. 8 bore at Mt. Penrhyn (see Plan No. 62-677), drilled to 148 feet, intersected granite at 25 feet. "Sabrina" bore, 10 miles north-east of Coober Pedy showed granite at 214 feet. Ker considered this information sufficient to outline this basin on its eastern and southern margins. See Plan No. 62-677 for a summary of borehole information in the region.

PHYSIOGRAPHY

The township of Coober Pedy lies on part of the Stuart Range escarpment. To the east of this escarpment lies the Lake Cadibarrawirracanna drainage system. To the west lies the Lakes Phillipson and Woorong drainage system. The Stuart Range hills are residual hills preserved from erosion by a thicker silicified capping.

Around Mabel Creek homestead are vast rolling plains 500 feet above mean sea level grading to flat tableland on the area to the south, which has been called the Cooper Pedy Ridge area.

Vegetation is sparse, consisting mostly of saltbush and bindyis.

Going south from the Coober Pedy Ridge along the Mable Creek - Ingomar road one passes from Coober Pedy-type soil to Wirramina-type soil near Banjo Yard on Long Creek. Sand dunes start to predominate. These have a covering of dense mulga scrub, with extensive undergrowth. A string of claypans, loosely connected and ultimately forming the headwaters of Caringallana Creek, extends from Mt. Penrhyn to Arkeeta Dam. Access to this area is extremely difficult; it is also hard to position oneself accurately. The only major landmark in the area is at Robin Rise where a residual hill rises to about 100

feet above the general ground level.

BUILD OF SHARE CUT ROSS

Reference is made to Milton (1969) who describes nelsmin refraction and reflection investigations made in 1964 and 1969 in the operar Archarings Basin of which this area is a part. These investigations showed because at shallow double in three places moor the proposed track. They have been called:-

- (4) the linbel treet becomes high
 - (2) the Coober Pedy Hidger
 - (5) the Nobin Mise besement high;

The select investigations are largely reinforced by the regional Bouguer gravity contents of the County Paul 11290,000 } talers.?
The select gravity contents highe as gravity highs and depressions as gravity highs and

The acrossports supe for the <u>Clarance</u> and <u>Phillipson</u>

10.63,360 sheet areas show popultic highs and obsep gradients

over the Cooker Pedy Migs. Acrossports sepe for the Estel

Crock and Hobis Rice areas are not insediately available.

CAME AMBARCANTERS

Describily the same equipment and personnel were used as in the Perfection Well area curvey. The comp was based just off the Embal Greek - Ingoner word about 15 miles south of Embal Greek. This proved to the the predicted impact some for missiles being launched in a progresse conducted by the Despots Assembl Establishment at Momera. Discussions with security authorities at Descent and been made before starting the curvey and they that erranged for radio contact to be Made delly.

Only one firing was in fact made while the curvey was in progress.

All personnel were evaluated to Babel Greek becauted shelters during

this sleet.

EQUIPMENT AND METHODS USED

The equipment used has been described previously in the Perfection Well area report (Nelson, 1971).

In general the same types of seismic spreads were used, although some fine weathering shots using 5 feet geophone spacing were also made to give more information on near-surface layers.

RESULTS

(1) Magnetic

The positions of ground magnetic traverses using an Elsec proton precession magnetometer are shown in Plan No. 71-689 and 71-690.

(a) Mabel Creek Area.

The magnetic field in the regions covered is generally quite uniform apart from from regional gradients and anomalies which, from their shape and amplitude characteristics, are undoubtedly from deepseated sources.

Seismic spreads DFW1, GPW1, NBW1 and GGA1/2 were laid down over the only noteworthy anomalies which might be ascribed to near-surface effects. However, no significant high speed refractors were recorded within the limits of spread size (and by implication within less than 400 feet from the ground surface).

(b) Coober Pedy Ridge.

A north-south traverse over the Coober Pedy Ridge revealed high magnetic values rising to a peak near CPA16 on the Coober Pedy Ridge (see Plan No. 71-687). This coincides very nearly with the peak of the basement high found by the seismic work.

A cross-travorse over this and slong the exis of the ridge defined by seizate results showed high segments values. but no high gradients which might indicate parts of becomest season the surface.

(c) liobin Rice Area

The breverse continuing south of the Cooter Fody Ridge along the Metal Crock - Ingoner road chosed along descending anguetic values, regional in nature, but nothing that could be regarded as indicating challow organization basesent. This was so even ever the seismically - defined basesent bigh recorded south of Robin Rise. The inference is that the basesent complex here is related more to the Perfection Well granice than to the Gooder Pedy Hidge basement, which from its apparent high magnetic succeptibility appears to be sore basic in character.

(2) Poissio

times were plotted in the form of time-distance curves. The information obtained in this way was solved for the thicknesses and speeds of the various layers by using a MARTAM program (SEISBERM) in conjunction with the State Covernment CDCJ2CO computer. In this program conventional algorithms for reducing solumbo data are used (see for example Dobrim, 1960). The positions of science appeads are shown in Plan Son. 74-669 and 74-690, and a list of the various appeads and their corresponding interpretations is given in Table I.

(a) Mabel Greek Area.

The refraction results in this area were most disappointing. The LWA line (see Plan No. 71-695) name Wablel Greek hordstead

a depth of around 300 feet. This may or may not be basement, but in any event it lies too deep for practical purposes.

Only be increasing the spread size to 2400 feet (as at JHA3 and JHA5) could a high-speed (17000 ft./sec.) refractor be detected. Here, however, this lay at depths of nearly 500 feet. (b) Coober Pedy Ridge.

Seismic work defined the ridge quite adequately. Line CPA ran alongside the Mabel Creek-Ingomar road between shotpoints vw and VX (used in previous seismic surveys). The highest part of the ridge seemed to lie under CPA14. At this point a cross-line; CPB, was set up with lines CPC and CPD at right angles to this at each of its ends.

The axis of the ridge appeared to coincide with a line joining CPD6, CPA14, CPB7, and CPC2. This line runs roughly east-west, and served to guide the positioning of shotpoints LCW1/2/3, JAA1, RGA1, LKA1 and GTA1/2, which were set out on either side of line CPA. These shotpoints, lying within 5 mile limits on either side of the proposed track show that the sedimentary cover increases to the immediate east and west of line CPA. This is probably a function of increasing ground elevation.

Reciprocal refraction shooting and fine weathering shots were made in the vicinity of CPB7, which had proved to be the most favourable spot. These methods showed that basement was shallowest 100 feet west of CPB7, at a depth estimated to be 96 feet. However, the interpreted depth of CPB7 itself was 99 feet and so a rotary drill hole was put down at CPB7, continuing from the bottom of the original shothole. Weathered basement

was encountered at 104 feet, followed by fresh crystalline basement at 108 feet. See Plan No. S9388 for the log of this hole and Appendix E for a petrological description of the basement rock collected as a drill core.

Close study of the basement high recorded near Robin
Rise and of the granite intersected at Mt. Penrhyn No. 8
bore reveals that they may form part of a ridge trending roughly
east-west from about 6 miles south of Robin Rise.

(c) Robin Rise High.

The author and a crew of three made a cross-country traverse from Mt. Penrhyn No. 8 bore to Arkeeta Dam while a camp shift was being made from the Coober Pedy Ridge area to Perfection Well. Seismic shots made at MP1/2/3 and at RR1 using 35 feet geophone spacing showed that the granite here slopes gently from 40 feet at MP1 to 151 feet at RR1. The nature of the terrain and a lack of aerial photographs made the positioning of MP2 and MP3 difficult, so there is some doubt about their actual position. However, it is reasonably certain that they lie on the line shown.

CONCLUSIONS

Sedimentary cover at Mabel Creek seems to be of the order of at least 300 feet, even towards the heart of previously recorded gravity and seismic highs. This is undoubtedly due to the tableland characteristics of the terrain (little or no truncation of the Pliocene topography). There is little prospect of suitable ballast sites being discovered in this region.

The Coober Pedy Ridge has been defined reasonably well in the immediate vicinity of the proposed track. Whilst sedimentary cover may thin out further to the west, in this vicinity there seems little likelihood of finding basement at depths of less than about

100 feet.

The shots fired at the Robin Rise High were exploratory in nature. The existence of a ridge as proposed has not been proved without doubt. I feel that the area offers some prospects in the way of near-surface basement, but it will require a complete survey in itself to cover the area adequately. In view of the unrewarding aspect of the country the costs of such a survey may be prohibitive and were certainly beyond the scope of this survey.

Price Outcrop at Figuralds Dam

R.G. NELSON

EXPLORATION GEOPHYSICS SECTION

RGN: JTS 12.8.71

REFERENCES

- Ker, D.S., 1962. Groundwater Prospects Coober Pedy Area;
 Mining Review, Dept. of Mines, S. Aust. 117: 17-29.
- Thomson, B.P., 1970. A Review of the Pre-Cambrian and Lower Palaeozoic Tectonics in S. Aust.; Trans. Roy Soc. S.Aust. 94: 193-222.
- Jessup, R.W., 1950. The Soils, Geology and Vegetation of North
 Western South Australia; Trans, Roy, Soc. S.Aust.
 74: 189-273.
- Nelson, R.G., 1971. Tarcoola Alice Springs Railway Ballast
 Seismic Survey, Report No. 1: The Perfection Well
 Area, Dept. of Mines, S. Aust. Report Book No. 71/57.

 Dobrin, M., 1960. Introduction to Geophysical Prospecting
 (2nd ed.): McGraw-Hill.

APPENDIX I

PETROGRAPHIC DESCRIPTION OF ROCK FROM COOBER PEDY BASEMENT RIDGE

Sample: P217/71 CPB7A: TS 26646 AMDEL REPORT NO. MP 4219/71

Location:

Coober Pedy 1:250,000 Sheet, grid ref. 236375. 25 miles S of Mabel Creek H.S. on Mabel Creek - Ingomar road, Bore hole to 108.

Rock Name:

Metamorphic rock of adamellite composition.

Hand Specimen:

A dark, coarsely crystalline rock.

Thin Section:

An optical estimate of the constituents gives the following:

•	\$	%
Quartz		10-15
Plagioclase	•	30
K-feldspar micropert	chite	45-50
Pyroxene		5
Hornblende	•	2-3
Opaques		2
Carbonate		Ž
Apatite		1

The rock consists of a mosaic of irregularly sized and shaped grains with weakly sutured margins. The grain size is quite variable ranging, for the felsic minerals, from 0.1 to 3mm. The ferromagnesian minerals show a similar size range but the average size is rather below that of the felsic minerals.

The dominant minerals are a K-feldspar microperthite untwinned except for the exsolution beads or stringlets, and albite twinned plagicclase. Both feldspars have been subjected to later effects, and, though little altered, have been cracked and the cracks infilled with red-brown ?micaceous clay.

The plagicclase, which is near An₁₀ in composition, has also been subjected to strain with the development of curved twin planes.

Signs of some lack of equilibrium are present, with unidentified, very thin reaction rims present in places between the feldspars or between the feldspars and quartz. There are small patches of myrmekitic or graphic intergrowths of quartz with feldspar.

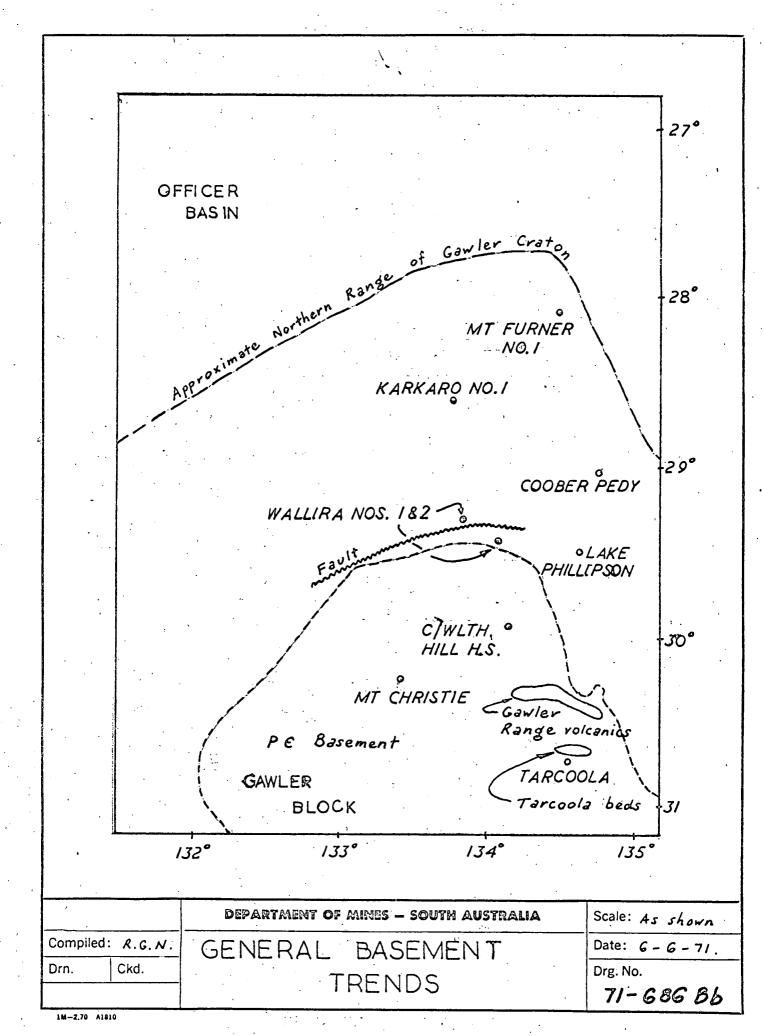
These appear to have been either the product of local remelting, or a result of recrystallisation

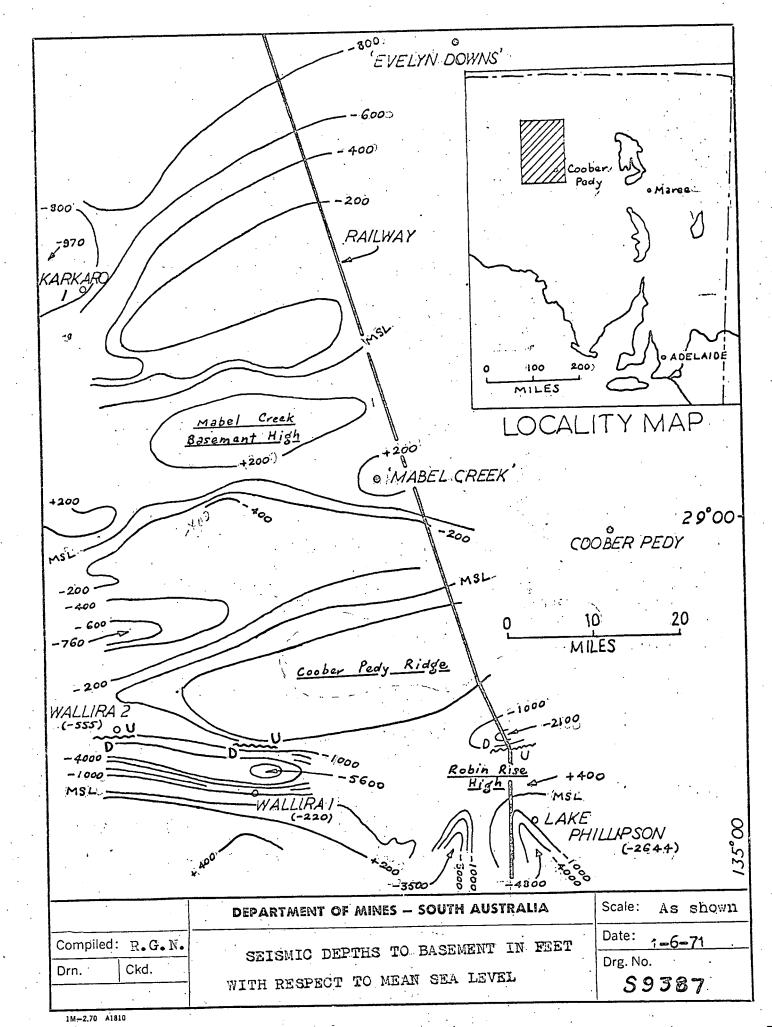
of material previously granulated by stress. Both causes may have applied.

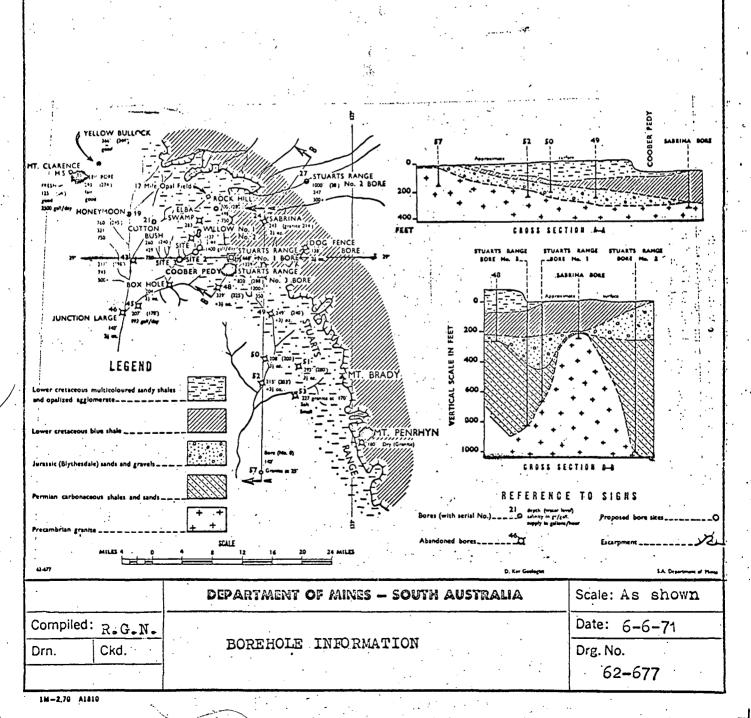
The ferromagnesian minerals are unusual in an acidic rock. The main ferromagnesian mineral has been a colourless clinopyroxene which is now highly altered and partly replaced by the same red-brown material (iddingsite or clay) noted earlier. Grains are anhedral but cleavage has been well developed. Alteration has taken place along the cleavage. Four grains are also colourless non pleochroic, but have straight extinction. These may represent orthopyroxene. A pleochroic brown, unaltered amphibole (hornblende) appears to be primary to the rock but there are, also, small patches of green amphibole derived from the clinopyroxene.

Rounded grains of apatite are present.

Some opaques are interstitial between fesic minerals; others are related to the ferromagnesian minerals. The opaques appear to be iron oxides.


This is a somewhat unusual rock. It is almost certainly a metamorphic rock of upper amphibole facies, but the original rock remains uncertain. It is indeed likely that this rock is from the local basement complex.


									;)
SHOTPOINT	·			· :						
KO.	v	h,	ν ₂	рő	v 3	li ,	v,	الم الم	<u>v</u>	7
LWA 1	2290	28	4810.	311	9090			· · · · ·		339?
2	2560	56	5000	17]	11110			··	·	2273
3	2000	29	5720	477	7730	!				5067
4	2430	25	3680	117	5110	259	9580			401?
- 5	3730	127	5240	294	10070					421?
6	1640	/	3540	199	6350	403	10600			603?
7	1700	5	3870	211	6960	<u>}</u>				*
8	1780_	6	3800	188	6830	<u>.</u>				*
9	1900	12	5370	366	6310					<u>*</u>
10	1790	4	3940	.185	6350	i 	1			
						-				
THAI	1800	15	4120	247	6370	<u> </u>				*
2	1700	//	4200		i	:				*
3 A	1360	11	4090	!	1	:	- !			×
3 <i>8</i>	2000	1	4270		1 -					492
4	2250	4	3460		6990					*
5	2000	19	4200							481
			,	-						
RNA 1	1350	11	4310	335	8400					3467
2	1700	31	5520							*
6	1750	6	4500			;				*
10	1700	14	4000		6670					*
14	1880	14	5710	!	10					×
			·	; ; ;		 				
GGAL	1430	/3	5880			1				*
2	875	7	5000							1
									<u> </u>	
MOLL	/2		-,,-		· · · · · · · · · · · · · · · · · · ·	1,		٠		
MBWI	/350	4	5440	<u> </u>		<u> </u>		 -		*
DFWI	875	5	4380	<u> </u>		-1				*
		1 /		<u> </u>				,,,,,, ,,,,,		
GPWI	1600	7-	3680		4700	169	7290	• •		187?
						<u></u>				ļ
	* Ino				basement					<u> </u>
		/ Depa	artaent c	of Anno	es — Souti	n aust	ralia ———————————————————————————————————	Sca	ale:	
Compiled: 12	G.N.		SEISHIC	REFRA	EAT MOITO	LE	:	Dat	e:	_ _
Drn. Ck		v.			th. layer i h. layer		t./sec.	ing	g. No.	·
 		h ⁱ	= thickne	ssof	i th laye	r. <i>f</i>	+,	7	able I	a.
L		. 7. =	<u> </u>	<u>ი გვმუ</u>	radiri Omben	ല മസവി	<u>iceble)</u>	<u> </u>		

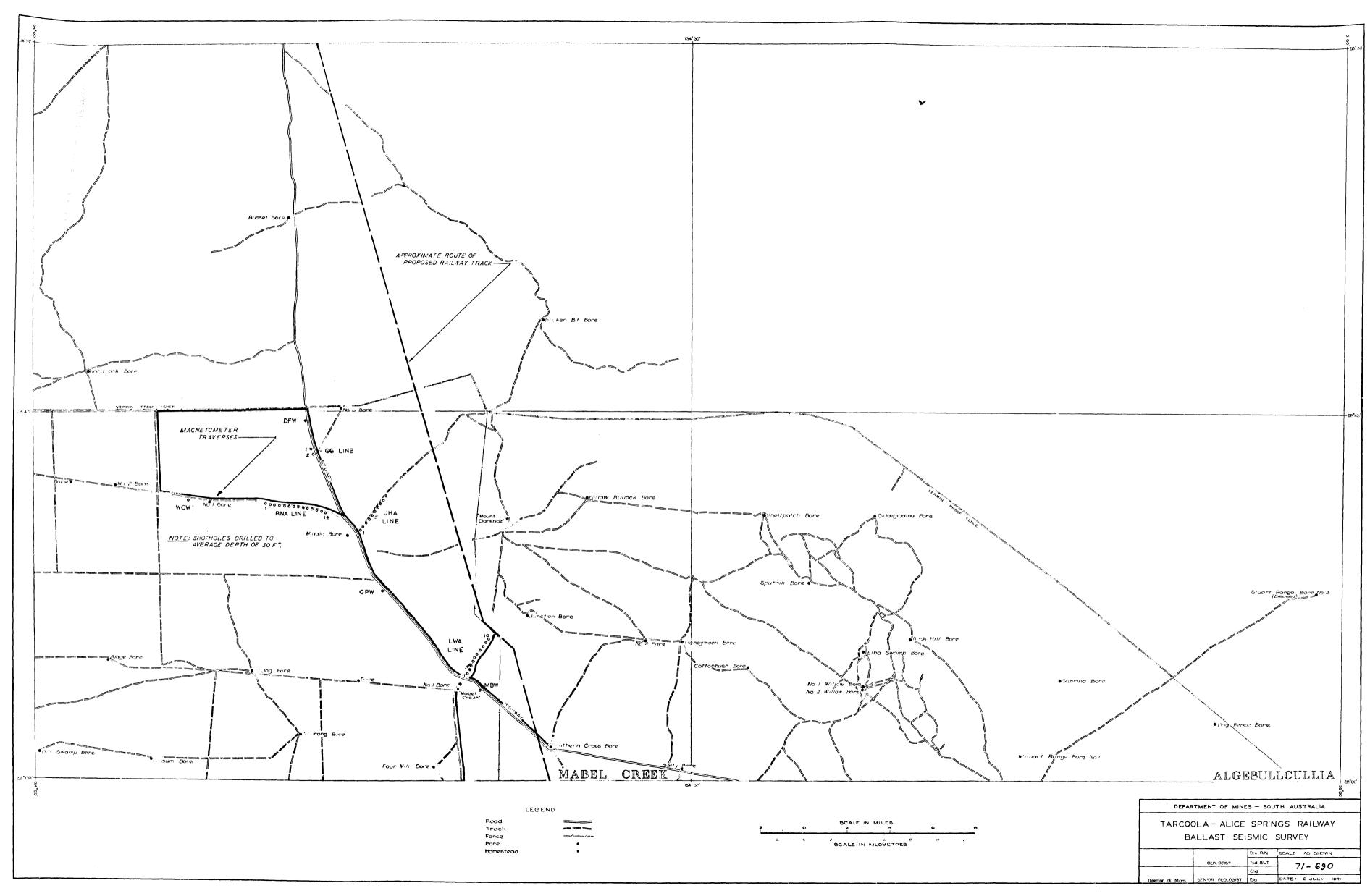

							1			1	
SHOTFOIRT			,			,					
МО.	V.,	h	л ⁵	<u>p^</u>	v ₃	h.,		'n,	v ₅	z	
CPAI	2630	17	5090	243	19860		ş		ļ	260	
2	3000	12	5380	232	17300					245	
3	1670	23	6020	260	14910			٠.		283	
4	2140	9	5260	305	22590	·				314	
5	1000	٠ 3	5550	325	21770		,			3 28	
6	2500		5190	296	19470					297	
7	2570	25	5500	267	10870					292	
. 8	2000	6	5370	305	12310	·		·		311	
9	2980	34	6270	238	8620				<u></u>	*	
10	1880	6	3450	107	7090	252	16510			364	
	2110	13	6320	230	17170			<u> </u>		250	
/2	1640	17	4420	142	17090				· ·	159	
	1700	22	4470	126	17690					148	
14	1710	4_	2930	132	18360					136	
15	1900	18	3340	120	19200					138	
16	1810	19_	4500	147	15130					176	
	1800	12	4080	162	26000			· 		174	
18	1800	10	3850	136	17860					146	
	1600	10	2860	170	17860			· 		180	
20	1500	9	2740	188	17200					197	
21	1700	10	3000	164	16700					174	
22	1900	/3	4000	150	15400					163	
23	2000	29	4350	131	20000					160	
					·						
<u>CP81</u>	2830	3.3	5570	23/	19580			,		264	
2	2/30	7_	4800	212	17840			,		219	
. 3	4880	21	7410	216	15390	,				237	
4	3710	26	7240	165	,					191	
5	1420	32	4700	108	20870					140	
6	1380	18	4720		i		,			166	
7	1600	7	4840	93						100	
8	2320	26	3620	112	20 760					138	
.9	1840	20	2000		18 180					161	
10	2580	1	5600		1			در. میرونده مرچالسیا وه		237	
					es – souti	I AUST	RALIA	Sca	ile:	· /	
Compiled: p.								<u> </u>		· · ·	
Drn. Ckc			SEISHIC REFRACTION TABLE						Date:		
Dill. CKC		v h	= velocity of i th. layer. = thickness of i layer.				1				
,		z ⁱ =			ool: Orban		inahla)	. /	able I	5 ,	

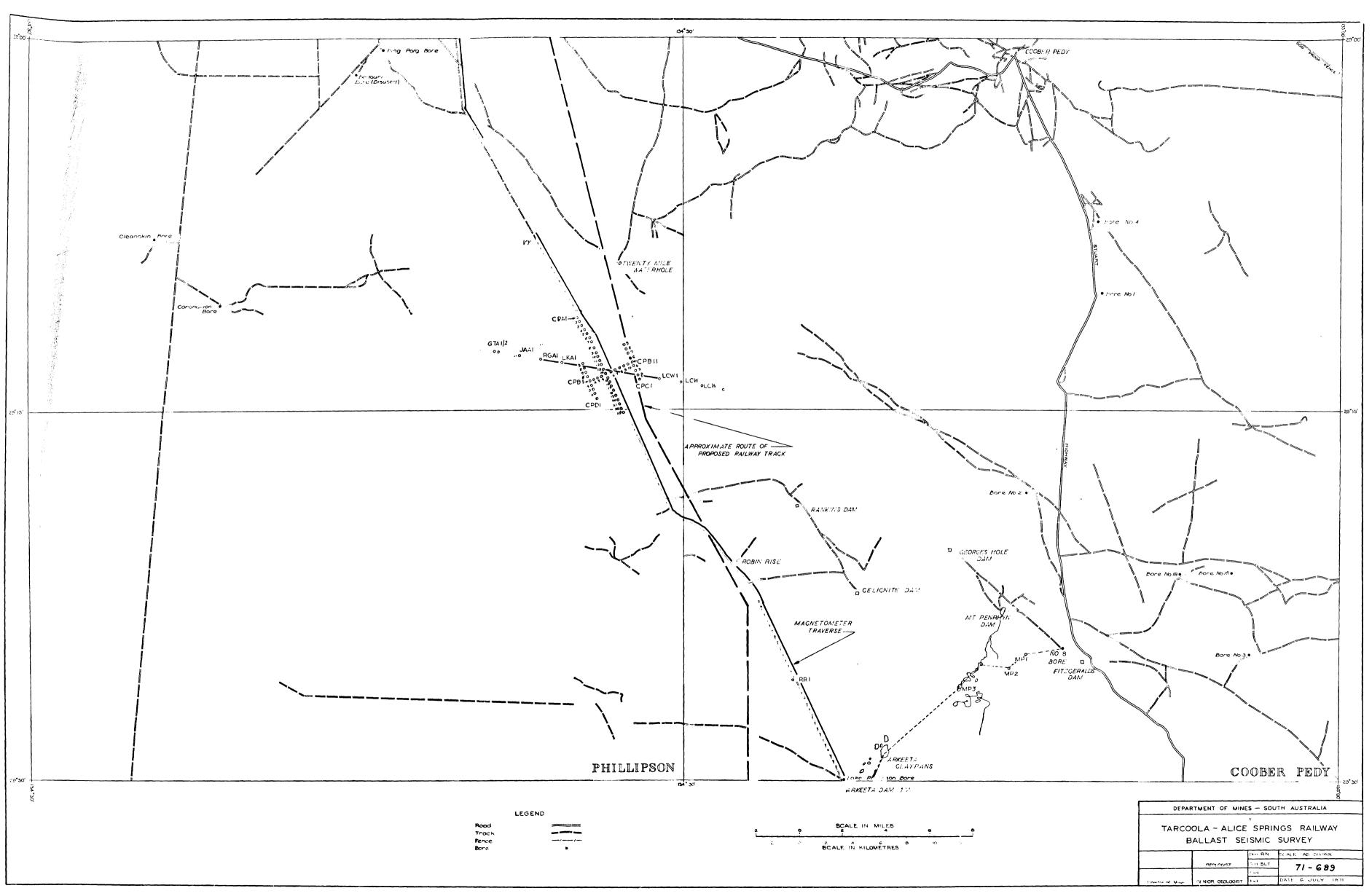
· · · · · · · · · · · · · · · · · · ·	\			<u> </u>	·				:	
SHOTPOINT	,	ર		·			!	•		
NO.,	v,	h.	A ⁵	ъ°	Ψ ₃	h_3_		<u> </u>	V ₅	z
CPB 11	1860	30	7140	311	18000	·	i	•		341
				· · · · · · · · · · · · · · · · · · ·						
CPC1	1410	17	5450	160	18100			·		177
2	2540	34	5440	140	16000				11 70000 margar strange stark	174
3	2750	17	3400	49	7020	251	1.7400			3/7
4	2190	19	3840	62	7410	/77	12500			258
5	1450	9	3330	77	6670	382	17860			4.68
66_	2480	13_	3810	73	6500	337	15380			424
7	2130	/7	2820	52	8100	197	13810			266
8	2/30	16	2700	56	7700	236	19000			3.08
9 -	2000	14	3160	67	6850	310	17930			391
			***************************************					· ·	·	
CPDI	2750	_27	5720							
2	3200	24	5680				-	· .		*
3	2110	3 <i>0</i>	5680	366	15 000			··· ·························		396
4	1750	14	5310	322	12 500			·		33 <i>6</i>
5	2110	24	6680	274	22730					298
6	2430	//	6790	i	13080					250
7	3300	35	4760	•	i :		:		·	177
8	3400	3/	5540	127	15530					158
99	2250	14	4500		ł	,				185
					2					·
CPWI (+ WSCPH	3) 530	2	1880	7	2.500	ع .	3725	87	20660	99
2 (+ WSCP4	5) 530	2	1880		2500	10			15000	100
· ·										·
JAAI	1500	: 8	4760	133	7140	//3				*
·						ŗ	ľ			
GTAI	2270	//	37.50	100	6780			***		
2	1500	8		•	11 486	,			<u></u>	224
					7, 400			,		
RGAI	3030	67	7/40				•			*
	0000		1140							· ·
LKA1	1800	12	4060	62	6690	382	25000		., ,.,	452
		in the state of the same				5.0.0	- , , , , ,			-1-4-
		DEPA	rtment o	P Marsi	is — South	Laust	Palia	Sca	le:	
Compiled				 .				Date		
Compiled: 19		-			CTION TAB:					
Drn. Cko	·	v h	= velocit; = thickne	y of i	th. layer	• r		. _	. No.	
	h' = thickness of ith layer. Z = depth to bedrook (where applicable) Table Ic.									-

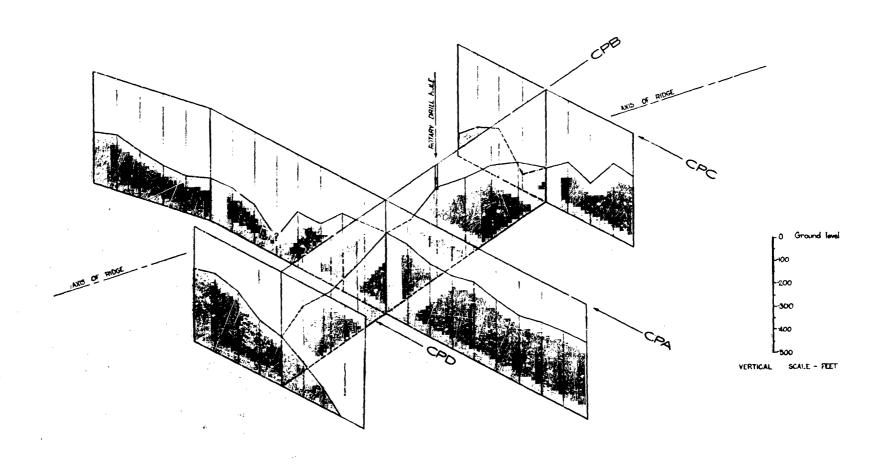
									-	1
SHOTPÓINT										
WO.	v,	h ₄	77.2	ъ° (<u>v_</u>	h_	V,	n,	v	z
LCWI	1000	6	4550	85					1	×
2	1350	6	3700	57	7300	!				*
3	1350	6	3730	69	7000	!		`.		*
·			,			<u> </u>	,			
MP 1	1100	6	4200	40	18400	! !		· 		46
2	1160	15	6100		i	ļ. 		: 		152
3	1030	14	5830	126	17100	1				140
				,		<u> </u>				
RR1	1000	7	3700	60	6200	84	19000			15.1
			•							
							مو.			
						_	; ;			
						ļ				
					,					
					·					

				,			j			

·		· · · · · · · · · · · · · · · · · · ·	***************************************							
										·
	1	·								·
٠ در										·
										 -
									,	 -
						7.		,		
		1				<u> </u>				
	1				ļ					· - ·
,	1	<u> </u>	·			<u> </u>			-	
		<u> </u>								
						<u> </u>				
	1	1		<u> </u>	<u> </u>	<u> </u>)		<u></u>
	·	DEPA	rtment 6	op medi	is — Søuti	m aust	ralia <u> </u>	Sca	ale:	
Compiled: 22.	G.N.	**			CTION TAB			Da	te:	
Drn. Ck		v.			th. layer i th. layer			Drg	g. No.	
		v h <u>i</u> z=	= thickne	ss of.	i th laye	r.			Table I	ol.
<u></u>	2 = denta to bedrook Orbers applicable)									

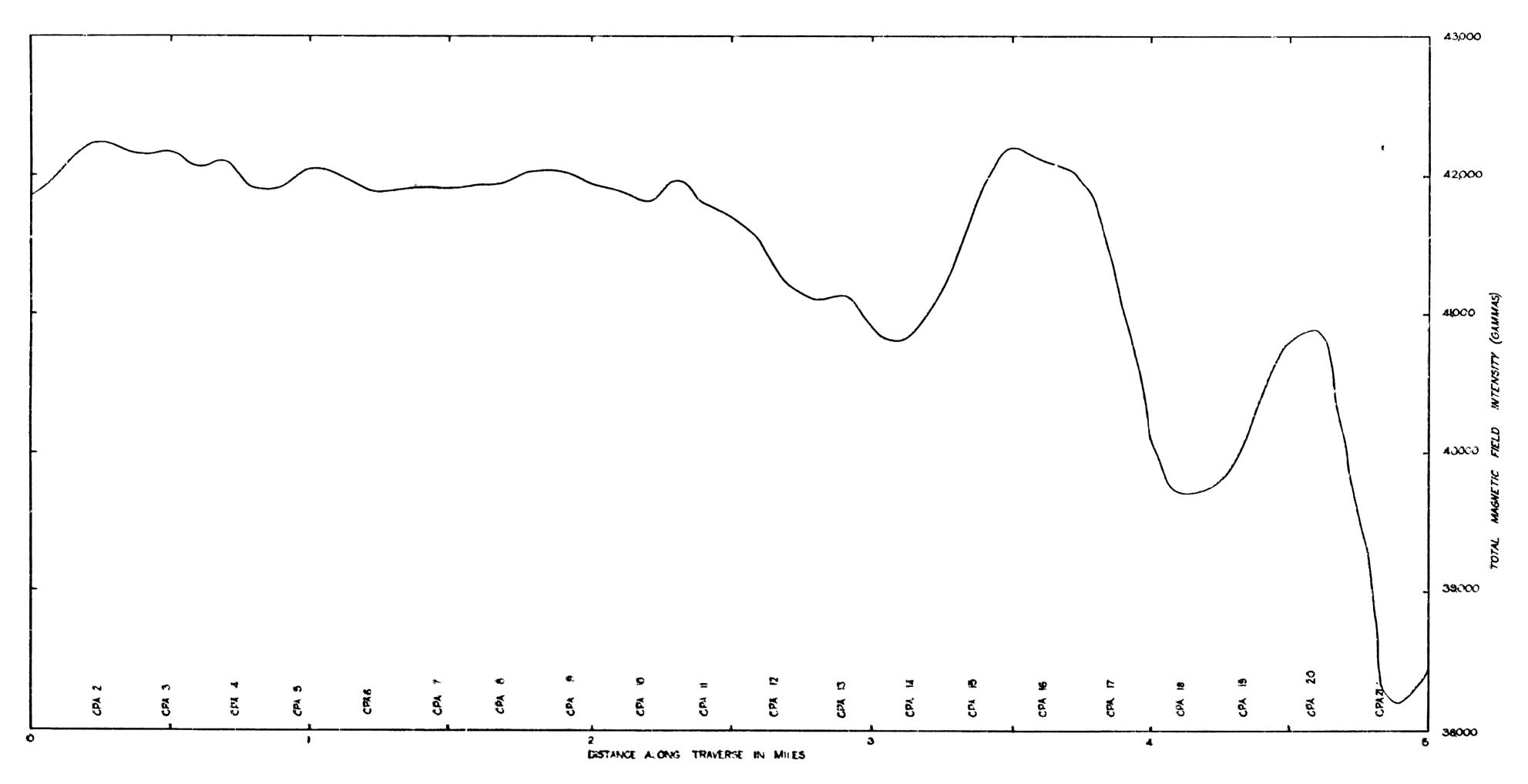





DE	PTH	<u>DESCRIPTION</u>	
Grom	To		
0'0"	10"0"	Brown silty soil with occasional silcrete pebbles.	
		Silcrete pebbles particularly abundant from 8'0" t	o 10°0".
10'0"	15'0"	Brown soil with abundant rounded pebbles up to $1\frac{1}{2}$ "	diameter,
		consisting of white silcrete, brown jasper and mot	tled white
		and red jasper.	
15'0"	20'0"	As above.	
20'0"	25'0"	As above.	
25'0"	33'0"	No sample.	÷ :
33'6"	34'8"	SILICIFIED SANDSTONE. Fine to medium grain	ed sands tone
	400	with fine light brown clayey matrix and quartz gra	ins up to
		2mms. diameter. Quartz grains subrounded to angula	r. Irregular
٠.		patchy silicification decreases with depth.	
3418"	35 "6"	Lost core.	
3516"	37'0"	SANDSTONE. Fairly well indurate	d sandstone
		with subrounded to angular quartz grains up to 4mm	s. diameter
	1	set in fine reddish-brown ferriginous silty matrix	•
37'0"	38'0"	Lost core.	
38"0"	40'0"	CONGLOMERATE SANDSTONE. Rounded to subangula	r quartz grains
		ranging in size up to 5mms. diameter set in fine b	rown
		ferruginous silty matrix.	
40'0"	45'0"	CONGLOMERATE SANDSTONE. As above but with sl	ight increase
·		in average size of quartz grains.	•
45 ' 0"	50'0"	CONGLOMERATE SANDSTONE. Subrounded to angula	ir quartz
	-	grains in fine pale brown silty matrix.	,
50'0"	55'0"	CONGLOMERATE SANDSTONE. As above.	•
55'0"	60'0"	CONGLOMERATE SANDSTONE. Subrounded to angula	r quartz grains
,		1mm. to 5mms. diameter set in fine pale brown silt	ty matrix.
		Minor feldspar grains.	•
60'0"	62'0"	CONGLOMERATE SANDSTONE. As above.	
62'0"	65'0"	Grey slightly silty clay with 5% subrounded to ang	gular quartz
·		grains $\frac{1}{2}$ -2mms. in diameter.	
65'0"	70'0"	Grey slightly silty clay - as above.	
70 " 0"	73'0"	Grey slightly silty clay - as above.	
	·	DEPARTMENT OF MINES — SOUTH AUSTRALIA	Scale:
Compile	ed: A.M.P.	LOG OF HOLE DRILLED AT CPB7.	Date: 10-8-71.
Drn.	Ckd.		Drg. No.
			S9388.

, <u>D</u> E	PTH.	DESCRIPTION	والمجارات المتعدل إدراء المواصية بالكافرية والمعاصرة والموارة الموارة الموارة المعادة المتعددة المارسات
From	<u>To</u>	*	
73'0"	75 ' 0"	CONGLOMERATE SANDSTONE. Subrounded to angu	ılar quartz
13		grains up to 6mms. diameter, with occasional rounde	d to subangular
		feldspar grains up to 3mms. diameter in fine light	brown silty
		clayey matrix.	· · · · · · · · · · · · · · · · · · ·
75'0"		CONGLOMERATE SANDSTONE. As above.	
1	84.0.	CONGLOMERATE SANDSTONE. As above.	•
8410"	85'0"	Blue-grey to pale grey silty clay with fine quartz	grains and
		small fragments of weathered quartz-feldspar rock.	
	90'0"	Blue-grey to pale grey silty clay - as above.	
	95 ' 0"	Blue-grey to pale grey silty clay - as above.	
	100'0"	Blue-grey to pale grey silty clay - as above.	
100'0"	10410"	Blue-grey to pale grey silty clay - as above but wi	
		in content of quartz grains to 40% near base of int	
104'0"	108 ' 0"	Weathered Feldspar-Quartz-Pyroxene-Hornblende rock.	•
		Medium-grained tomcourse-grained.	· .
108 ' 0"	112'6"	Feldspar-Quartz-Pyroxene-Hornblende rock.	22.4
·		Dark, coarsely crystalline metamorphic rock of adam	e.Llite
-		composition. AMDEL Report No. MP/4219/71.	
		TO TO A401611	
	·	E.O.H. 112'6".	, ** 4
			•
			· .
			•
•			
			•
			<u> </u>
		DEPARTMENT OF MINES — SOUTH AUSTRALIA	Scale:
Compile	d: A.M.P	· _	Date: 10-8-71.
Drn.	Ckd.	LOG OF HOLE DRILLED AT CPB7.	Drg. No.

s9388.



DEPARTMENT OF MINES - SOUTH AUSTRALIA

COOBER PEDY RIDGE DEPTHS TO BASEMENT

EOPHYCICAL .		Dra. RGN	SCALE: AS SHOW	/N	_
ELTION	GEOPHYSICIST	Ted. S.IL	7/-688		
		CH		ВЬ	
Director of Mines		Exd.	DATE: 7" SEPT	1971	

FOR LOCATION OF LINE CPA SEE PLAN 71-689

DEPART	MENT OF MINES	S - 50	UTH AUSTRAL	JA					
COOBER PEDY RIDGE									
\sim	IAGNETIC	TRA	VERSE						
GEOPHYSICAL		Drn.RGN	SCALE: AS SHOW	٧N					
SECTION	GEOPHYSICIST	TalSJC	7/-687						
		CM.	1 " 50"	Bb					
Director of Mines		End.	DATE: 8 SEFT	1971					