DEPARTMENT OF NINES SOUTH AUSTRALIA

REPORT ON EXPLORATION DRILLING OF SULPHIDE MINERALISATION

AT STURY RIVER DAY STITE

by

V. Johnson Senior Geologist

LABLE OF CONTENTS

Introduction

Geolegy

Drilling Results

Conclusion & Recommendations

<u>AVI/ENDICES</u>

- I. Dissond Drilling Logs
- II. Chemical and Spectrographic Assay Results Dismond Drill Holes SRE 1 and SRE 2.

Rept. Bk. No. 55/116 G.S. No. 2486 D.M. 2111/61 N.P.M. 138

DEPARTMENT OF MINES SOUTH AUSTRALIA

REPORT ON EXPLORATION DRILLING OF SULPHIDE MINERALISATION AT STURT RIVER DAM SITE

In an earlier report, drilling to test for extensions of a zinc sulphide lode encountered in the left abutment area of the proposed flood control dam on the Sturt River, was recommended.

This drilling was completed on 2,2,62 and at about the same time some geophysical testing was commenced. This the receipt of the Senior Geophysicist's report on this geophysical work it is appropriate to review the results of drilling, in the light of the information obtained.

GEOLOGY

This has been reviewed in the previous report¹. The important features are that the metallic sulphides occur in a breccia of sedimentary origin medified by tectonic effects. Recent work by Coats² in the Sturt River area has disclosed a possible unconformable or disconformable contact between the Sturt Tillite and the everlying Tapley Hill Slate. At the dam site the mineralisation is definitely in the tillite. Other mineral prospects may be either at the contact or up in the Tapley Hill Slate.

The Sturt dam site breccia apparently occurs at a contact between boulder tillite and laminated, bedded, fine grained fluvioglacial silt and shale.

JOHNSON, W. 1962. Geological Investigation of Sulphide Mineral isation Near the Tillito/Slate Contact Sturt River Area. DEPT. MINES S.A. MIN. NEV. 115 pp.

²COATS, R.P. 1962. A Sturtian Unconformity. AUST. JOURN. SCI. (submitted).

DELLING RESULTS

Logs of the two drill holes and assay results are appended. These show higher than background values of copper, load, and sinc at various parts of the cores. No economic concentrations of copper, load or sinc were intersected.

Both holes intersected fluvioglacial shale and siltstone and brecciated tillite. The breccia appears to be in part of testonic origin and in part of sedimentary origin. It cannot be proved that it is physically connected with the breccia outcropping in the left abutment of the dam site as the drill hole intersections are under alluvium and river gravels.

The drilling has proved that mineralisation, and the goological conditions under which it occurred extends beyond the area in which it was first extended. It has given encouragement for further investigation which at this stage should be purely geophysical.

CONCLUSION AND RECOMMENDATIONS

Drilling results indicate extensions of mineralisation originally encountered in DDM's S.D.O. 3 and 4 and geophysical testing has shown anomalies over the known mineralised breccia and in areas further east.

Mr. Webb's recommendation of no drilling at this stage is supported and it is recommended that his suggested geophysical programme should be expanded to cover the area XTZ outlined on the plan in the copy of his report, accompanying this report.

Senior Geologist NON PERSONS METALS STOTE

NJ : JOK 15/11/62

DIAMOND DRILLING LOGS

SRE 1

SRE 2

DIAMOND DRILL LOG

						Bore Serial No. DD
Hundr	ed			Sectio	n	Plan Reference
Co-ord	inates			***************	***************************************	R.L. of Collar
Bearin	g	103	I	Oepresse	d	Driller
Date I	rilling	comme	aced	*/1	/62	Date Drilling completed
			,			LOG
,	Ι)ертн		C	ore	
Fr Ft.	om In.	Ft.	To, In,	Reco	overed In.	3" care
T 0.	10.	2		P 0.		Tillite with very small erratics, some weathering
•			***		***	eless joint pleace.
2	4	4	6	2	3	
	•	9	2	4	8	
***	2			4	10	
40	•			•		Tillite as above with calcitic and quarta veins in tension cracks carrying sulphides.
39	0		6	4	•	
	•		0		•	
	•		•	3		
	9			*		
7	Č	a	6	4	6	· ·
44	6		3	4	•	From 47' tension veins becoming slightly thicker with heavier sulphides.
	3	84	•	4		
.4 .)	0		•			
, , , ,	0		3		2	
	3		•		•	Processed fine grained tillite commented by quarts calcite veins with sulphide breegistion - has the appearance of being partly sedimentary in origin and partly tectonic.
63	6	6	6		9	
**	6		3	4	10 9	Bedded tillite without erratics - very fine distorted leminations probably affected by elumping - fine to medium grains of sulphide towards the top
70	3		•	4 .	3	Sparse quarts calcite voiss.
	9		4		2	
	8				3	
97	2		2			Varve like imminations or hedding effected by slumping
	0				•	and breceistics.

Date.....

2m-2.57 1706

DIAMOND DRILL LOG

Project			DM
Bore No	\$\$1\$\$		Bore Serial No. DD
Hundred		Section	Plan Reference
Co-ordinates		••••••	R.L. of Collar
Bearing	1))) D	epressed	Driller
Date Drilling	commenced	9/1/2	Date Drilling completed
			LOG
DE	PTH	Core	
From	To	${f Recovered}$	
Ft. In.	Ft. In.	Ft. In.	

106 116 116 121 121 10 126 Breceisted sulphide from 125' to 126'0". 131 2 131 *2*

Bore logged by

Date.....

2M-2.57 1706

DIAMOND DRILL LOG

Project		mr a			II	DM
Bore N	O.,		2	•••••		Bore Serial No. DD
Hundre	ed			Section	on	Plan Reference
Co-ordi	nates					R.L. of Collar
Bearing	ζ	190	I	Depresse	ed	Driller
Date D	rilling	commen	ced		15/1/62	Date Drilling completed 2/2/62
						LOG
	D	ЕРТН		<u> </u>	ore	
Fr	om	Т	'o _'	Rec	overed	
	In.	Ft.	In.	Ft.	<u>In.</u>	
0.	0		0	1	10	Weathered tillite
5	0	7	6	2	3 7	Sacra \$168 acceptanced only observed dates are de-
	•	**	•		*	From 7'0" weathered only along join crocks tillite with very sparse more erratic.
.1	6	16	0	4	6	
16		21	0	8	•	
21	0	25	6	4	6	Dark grey tillite with faint leminations
25	6	27	4	1	10	
a	4	30	0	2	9	Proceletion heavily comented with quartz calcite probably tectonic.
30	•	32	6	2	6	
32	6	33	8	1	4	
33	8	34	8	1	3	Tillite consisting almost entirely of fine to coarse
34	6	39 44	0	4	9 10	comminuted rock fragments, some peoply erratics, traces of bedding and lemination showing lumpy.
744			7		0	
	7		• 7	4	7	From 52' to 64'0" core hadly broken along irregular
	7		4	6		shear planes.
SO	4	63	2	6	6	
60	2	68	0	3	6	
60	0	73	0	4	0	Tillite with practically no erratic and faint bedding
73	0	70	0	5		•
						From 64'0" to 75'0" core in small fragments, heavily sheared and crushed probably tectonic brecciation.
70	0	• 62	6	4	6	Tillite with sperse pebbly erratice.
	6	07	6	\$	0	
67 92	6	92	4	4	10	Quarts calcite veins with sulphide at 91'8".
97	4	97	4	5	0	
78	**	194	v	• • • • • • • • • • • • • • • • • • •	•	

Date.....21/2/62

Bore logged by.....

2M-2.57 1706

DIAMOND DRILL LOG

Bore No.	Project							DM				
Co-ordinates R.L. of Collar Bearing Depressed Driller Date Drilling commenced LOG Defent Core Recovered Ft. In. Ft. In. Ft. In.	Bore 1	No					Bore Serial No. DD.					
Deprised Deprised Deprised Deprised Date Drilling completed 2/2/62	Hundi	ed		; !	. Secti	on	21	Plan Reference				
Date Drilling commenced 25/1/62 Date Drilling completed 2/2/62	Co-ord	linates			•••••	•••••		R.L. of Collar				
DEPTH Core Recovered Ft. In. Ft. In. Ft. In. To To To To To To To T	Bearin	.g	160	D	epress	ed	2	Driller				
Depth Core Recovered Ft. In. Ft. In. Ft. In. To To To To To To To T	Date I	Orilling	commer	aced		5/1/62	·	Date Drilling completed				
From To Recovered Ft. In. Ft. In. To St. In. Ft. In. In. Ft. In. In. In. In. In. In. In. In. In. In	t	•					LOG					
Ft. In. Ft. In. Ft. In. 102 0 107 0 5 0 167 0 111 7 4 7 Veia with sphelerite at 107'8". 111 7 121 2 6 6 121 2 126 0 4 10 Veia with chelcopyrite? at 123'0".		D	ЕРТН					· · · · · · · · · · · · · · · · · · ·				
-2- 102 0 107 0 5 0 107 0 111 7 4 7 Veis with sphalerite at 107'8". 111 7 121 2 8 6 121 2 126 0 4 10 Veis with chalcopyrite? at 123'0". 126 0 131 0 5 0			1		ł							
107 0 111 7 4 7 Veis with sphalerite at 107'8". 111 7 121 2 8 6 121 2 126 0 4 10 Veis with chelcopyrite? at 123'0". 126 0 131 0 5 0		111.	100	ти.		111.						
107 0 111 7 4 7 Veis with sphalerite at 107'8". 111 7 121 2 8 6 121 2 126 0 4 10 Veis with chelcopyrite? at 123'0". 126 0 131 0 5 0							*3*					
111 7 121 2 6 6 121 2 126 0 4 10 Vein with chelcopyrite? at 123'0". 126 0 131 0 5 0		- 			5							
121 2 126 0 4 10 Vois with chelcopyrite? at 123'0". 126 0 131 0 5 0					4		Vein with	sphalerite at 107'8".				
126 0 131 0 5 0		7				· ·						
					•		vois elta	chalcopyrite? at 123'0".				
BOTTON OF HOLE	460	•	404									
			131	0								
).	,						
					· ·							
			:									
)							
					*	:	•					
					• • •							
				4			*					
			:									
Γ) · 	,								
		·										

Bore logged by

21/2/62

Date..

2M-2.57 1706

APPENDIX II

CHENICAL AND SPECTROGRAPHIC ASSAY RESULES DIAMOND DRILL.
HOLDS SEE 1 & SEE 2

Analyses by Officers Amstralian Mineral Development Laboratories

Duit S.R.B. 1

ELECTRIC AND SE

A1136/62-A1152/62

LOCALITY

Sturt Creek Dam Site, Bore S.R.E. 1.

INFORMATION REQUIRED.

Analysis.

Lack	•		20	Ag (Ag) r long ton	<u>Copper</u> (Cu)	(Pb)	<u> </u>	
A JI 36/62	59 -	60*			0.01	0.02 %	1.40 %	
A1137/62	60 -	61.	0	0%. J.O dwt.	0.006	0.01	0.50	
A1138/62	61 -	62*	0	1.0	0.005	0.01	0.03	
ALL39/62	62 -	631	0	1.0	0.003	0.01	x.D.	
A1140/62	63 -	a.	0		0.005	0.02	N.D.	
A1141/62	64 -	65"		***	0.005	0.01	3. 3.	
AL142/62	65 -	66*	0	1.0	0.001	0.01	N.D.	
AL143/62	66 -	671	0	2.0	0.003	0.01	N.D.	
AL144/62	67 -	681	٠.	144.	0.006	0.01	N.D.	
ALI45/62	68 -	691		NII	0.006	0.01	X. D.	
AL146/62	6) -	70*	0	2.0	0.003	0.01	W.D.	
ALI47/62	70 -	71.		**1	0.008	0.01	N.D.	
A1148/62	71 -	721		*11	0.006	0.01	1.	
AL149/62	72 -	73'		NII	0.006	0.01		
ALL 30/62	73 -	741			0.003	0.01	N.D.	
ALL51/62	74 -	75*		XLI	0.003	0.01	N.D.	
AU 52/62	124'10'	-126'			0.004	0.01		

N.D. = Not detected.

Analysis by: S.A. Alexander & R.B. Oliver.

Officer in Charge Analytical Section: T.R. Prost.

DOM S.R.D. 1

REPORT OF ANALYSIS

YOUR REFERENCE: LOCALITY: DATE RECEIVED:

A 1489/62 - Al345/62 Sturt Creek Dam Site Bore SRE 1 7.3.62

Spectrographic Analysis.

Lark		4	4	23	<u> </u>	14		4	1	<u> 1</u>
A1526/62	91'	40	70	230	10	10	0.8	500	100	15
AL J27/62	931	25	60	100	10	12	0.8	300	80	10
AL328/62	95'		2000	1000	10	20	0.8	700	80	10
AL 529/62	971	60	230	600	10	20	0.6	600	150	10
A1530/62	991	25	60	<i>y</i> (00)	10	12	0.5	600	160	*1 0
AL53L/62	101.	40	70	70	10	12	0.6	400	200	*10
AL532/62	103'	25	100	100	10	10	1	600	150	15
A1533/62	103*	30	120	150	10	12	0.6	300	200	15
A1534/62	107'	30	1,500		8	12	0.7	600	100	10
AL535/62	109	80	500	600	15	10	0.7	600	150	15
A1536/62	111,		200	300	10	15	0.4	600	200	15
AL337/62	113'	60	300	300	12	15	1	600	200	*10
AL538/62	115'	15	40	300	12	20	5	370	<i>5</i> 0	10
A1539/62	117'	20	30	1,50	12	12	0.4	300	80	10
A1540/62	119'	23	30	L30	12	15	1	600	100	*10
A13/11/62	121.	25	70	1,70	15	15	0.5		100	15
A1542/62	123'	13	30	130	15	15	0.6	800	80	*10
A1543/62	126'	25	30	200	12	12	0.2	700	30	*10
A1544/62	128*	25	70	30	12	15	2.5		30	10
A1545/62	130'	20		10	12	15	0.3		3 0	10

Results in p.p.m.

^{* =} Not detected - Less than

Spectrographic Analysis by: A.B. Times.

Officer-in-Charge, Analytical Section: T.R. Frost.

D.D.H. S.R.S. 2

CONTROL MALVOLS

YOUR REFERENCE: LOCALITY: DATE RECEIVED: INFORMATION RESUIRED: A1546/62 - A1610/62 Sturt Creek Dam Site Bore SRE 2 7.3.62 Spectrographic analysis

					9900		4-			
		4	4		2					25
AL546/62	2.	15	25	30	10	16	0.0		40	20
ALJA7/62	4.	10	20	30	10	15	0.3	600	30	20
A1 340/62	61	200	2000	4000	20	30	2	800	800	30
A1549/62	8.	20	250	300	12	12	1	300	100	20
AL330/62	10'	10		300	12	10	1.5		60	20
A1551/62	121	40	200	800	15	13	1	600	100	30
AL552/62	14.	40	1,0	2,0	12	12	1	600	80	30
A1553/62	161	60	200	300	10	13	1	600	60	30
A359/62	181	40	1,50	300	18	15	1	500	<i>5</i> 0	3 0
AL555/62	201	25	700	300	18	15	1	600	60	30
A1556/62	221	30	300	500	18	12	*	800	60	20
AL537/62	24.	23		200	13	10	1		60	20
A1558/62	26*	15	150	200	10	15	1.5	600	100	20
A1539/62	201		100	2000	5	15	0.8	2000	23	30
A1360/62	30'	30	150	700	12	13	1	1000	X	30
AL)61/62	32 1	300	2 500	8000	20	60	2	800	40	20
AL362/62	34 *	10	70	50	8	13	0.0	800	40	20
A1563/62	361	12	60	1,70	1,2	15	0.6	2000	25	20
A1564/62	38 *	18	50		15	15	0.8	800	60	20
A1365/62	401	25	80	200	8	15	1.5	800	40	20
A1566/62	121	20	100	200	10	18	0.2		30	20
A1567/62	441	10		200	12	10	0.2	800	40	20
A1360/62	46*	18	80	200	15	18	0.5	1000	50	20
A1569/62	46*	15	20	30	12	15	0.2	600	40	20
A1570/62	50'	23	J0	60	12	10	0.8	500	30	30
AL571/62	52*	15	40	150	10	12	0.3		X	20
A1572/62	<i>5</i> 4.	15	18	×	15	18	0.2	800	60	20
A1573/42	36 1	1.3	15	25	L5	20	0.3	800	30	20
A1574/42	581	25	13	20	1,5	15	0.2		5 0	30
A377/62	601	23	30	2)	15	18	1	1000		30
AL376/62	621	25	20	800	15	18	0.3	1000	70	20
AL577/62	41	13	10	20	10	12	0.4	800	40	20
AL578/62	661	20	13	25	18	20	0.8	1000	100	70
AL579/62	631	60	20	270	15	15	1.7		80	30
A1580/62	701	20	20	40	12	15	2.5	800	60) 0
AL581/62	721	10	20	60	20	30	1	600	100	20
A1502/62	741	15	13		18	15	0.8	600	80	3 0

Spectrographic analysis

	29012	4		4	<u> </u>			4	1	25
A1303/62	761	15	40	250	15	15	0.8	800	60	90
A1504/62	78*	13	23	200	15	15	0.6	300	60	20
A1585/62	801	20	23	30	15	15	0.8	800	100	
AL386/62	021	13	50	1,00	20	10	0.8	800	80	20
ALJ87/62	84.	18	15	30	15	15	0.6	800	80	70
AL380/62	86*	IJ	30	30	15	15	0.5		80	20
ALJB)/62		70	80	60	15	15	1	800	<i>3</i> 0	30
AL390/62	901	30	J 0	400	10	15	1	400	70	20
AL591/62	921	80	100	40000)	20	18	1	1000	60	20
AL392/62	94*	15	70	200	12	15	1.5	800	80	20
AL593/62	96*	20	200	1,500	15	18	1	800	60	20
AL594/62	98*	20	200	1200/	12	15	0.8	800	60	30
AL595/62	100	30	1,500	1200	15	20	1.5	800	80	20
A1596/62	705.	25	70	1200	15	12	1		80	30
AL597/62	1041	40	60	800	12	18	1	400	60	20
AL598/62	106'	J0	80	200	15	18	20	1000	80	30
AL599/62	1081	23	200	1800	15	15	0.8	600	100	20
A1600/62	110'	6000	200	400	15	2)	2	800	130	20
A1601/62	112'	20	120	330	15	18	1	800	150	20
A1002/62	114.		1200	6000	15	23	1.5	600	150	20
A1607/62	116.	30	120	4000	15	2%	8	400	60	20
A1604/62	118.	10	120	600	12	20	0.5		100	20
A1607/62	120'	20	60	350	15	25	0.4		1,50	20
A1606/62	T22.	15	10	80	12	20	0.3	800	100	20
A1607/62	124*	30	300	1200	10	25	0.8	1000	100	20
1400/62	126.	100	2000	5000	10	3 0	0.8	1000	150	20
A1609/62	120'	200	1000	8000	20	100	2.3	860	200	20
A1610/62	130'	400	1200	6000	20	<i>5</i> 0	2	300	1,70	20
				<i>3</i>					W. 17	-

Sected - Less than

Spectrographic analysis by: A.B. Timms
Officer-in-Charge, Analytical Section: T.R. Prost

^{** =} Detected - Greater than

Results in pps.