

DEPARTMENT OF MINES SOUTH AUSTRALIA

GEOLOGICAL SURVEY GEOPHYSICAL SECTION (SEISMIC)

IN THE WESTERN PORTION OF THE GREAT ARTESIAN BASIN CALCULATED FROM T DELTA T ANALYSIS OF REFLECTION PROFILES

by

B.E. Milton Asst. Senior Geophysicist

K.R. Seedsman Senior Geophysicist

Rept. Bk. No. 54/16 G.S. No. 2373 D.M. 1177/62

A VELOCITY DISTRIBUTION FROM SURFACE TO THE BLYTHESDALE

GROUP IN THE WESTERN PORTION OF THE GREAT ARTESIAN BASIN

CALCULATED FROM T DELTA TO ANALYSIS OF REFLECTION PROFILES

рy

B. E. Milton and K. R. Seedsman

During the period August 1958 to November 1961, a S.A.

Department of Mines Seismic Party spent 27 crew months shooting reconnaissance reflection profiles (mainly character and interval correlation at 2 mile station spacing) over the traverses shown on Location Plan 62-361. Time cross sections have been prepared for these lines with contour plans of some horizons using (a) the velocity distribution obtained from a well velocity survey of Delhi-Frome-Santos Innamincks No. 1 Well (I) and (b) time-depth curves computed from a TdeItaT analysis of reflections (2). The velocity distribution obtained from the well shoot at Innamincks No. 1 is the only one established in this manner in the South Australian portion of the Great Artesian Basin at the time of writing.

Over most of the lines shot it is possible to correlate reflections assumed to originate near the top of the Blythesdale Group. These reflections which have been labelled "C", are frequently of fair to good quality, and an average velocity to the reflector can be calculated with a fair degree of reliability using TdeltaT analysis (3). The two-way reflection time from the surface at the shot point and the normal move-out (deltaT) obtained by averaging the difference in time from the shot point to the outside traces of split apreads (the latter corrected for elevation and weathering differences) were recorded for correlated reflections from more than 400 shot points. These were averaged in groups of .050 second from .300 to 1.400 second, the range over which the "C" reflection extends (see Table 1). Average velocities were calculated from the average

values of T and deltaT using the formula:

 $\overline{\mathbf{V}} = 1200/(2\text{TdeltaT})^{\frac{1}{2}} \text{ feet/second.}$

the distance from shot point to the outside trace being 1200 ft.

On plotting the values of \overline{V} against T, it appears that the relationship $\overline{V} = f(T)$ is not linear. A regression curve of the form:

 $y = s_1 + s_2 x + s_3 x^2$ was fitted to the data (4) and the following equation derived:

 \overline{V} = 4730 + 3400T - 860T (see drawing L62-19), where T is the two-way time from the surface at the shot point. Assuming straight line travel paths, i.e.

 $Z = \frac{1}{2}VT.$

a function relating depth to time was calculated, viz.,

Z = 2365T + 1700T - 430T (see drawing L62-20).

From a graph of this function, depths to the "C" reflector have been found at shot points contiguous to a number of water and oil exploration bores.

Table II shows reflection depths compared with well intersections. In a number of cases, as indicated in the table, the depth of the "C" reflector at the bore has been estimated by extrapolating the reflection data; in some other cases it has not been possible to do this as the nearest shot point is some distance from the bore (the mileage is shown in the second column of the table against the shot point number) and to enable a more valid comparison to be made of the relative depths, notes on trends between shot points and bore for several individual cases have been appended to the table.

REFERENCES

- (1) Report on Well Velocity Survey Delhi-Frome-Santos
 Innamincka No. 1 Well S.A. Department of Mines 22 July
 1959 RB636, GS1413 (unpublished).
- (2) Preliminary Report Seismic Survey 1960 Great Artesian Basin South Australia and Queensland S.A. Department of Mines 10 February 1961 Milton & Seedsman. RB52/24, GS1921 (unpublished).

- (3) Seismic Prospecting for Oil Dix (Harper) Sec. 7.3
- (4) Statistical Methods for Research Workers R.A. Fisher (Oliver & Boyd)

B.E. Milton

Asst. Senior Geophysicist

K-R. Seedsman

K.R. Seedsman Senior Geophysicist

15/6/62

Average values of T and delta T in groups of .050 second

From	To	No. of Observations	Total T	Total deltaT			Velocity ft./sec.	Depth Ft.
1.400	1.35	17	23.459	.1456	1.380	.0086	7780	5370
1.350	1.30	L 88	116.492	.8145	1.324	.0093	7670	5070
1.300	1.25	L 97	123.916	. 9045	1.278	.0093	7770	4970
1.250	1.20	7 77 7	54.070	•4525	1.229	.0103	7540	4630
1.200	1.15	1 45	52.834	•4970	1.174	.0110	7 450	4380
1.150	1.10	L 50	56.002	•5820	1.120	.0116	7430	4160
1.100	1.05	1 105	112.671	1.2850	1.073	.0122	7400	3970
1.050	1.00	1 81	83.106	1.0545	1.026	.0130	7340	3770
1.000	•95	1 124	120.072	1.7365	•968	.0140	7290	3530
•950	.90	L 59	54.816	. 8695	• 929	.0147	7 250	3370
.900	. 85	L 23	20.099	.3665	.874	.0159	7190	3140
.850	.80	1 58	47.706	1.0485	.823	.0181	6960	2860
.800	• 75	102	78.978	2.0235	•774	.0198	6850	2650
•750	.70	L 48	35.085	1.0755	.731	° 0 557	6630	2420
m .700	. 60	1 12	7.832	• 3275	.653	.0273	6360	2080
m .600	. 50	L 9	4.898	-2935	• 544	.0326	6370	1730
x •500	.40	1 7	3-147	• 3150	•450	. 0450	5970	1340
•400	35	1 8	2.964	.4280	.371	.0535	6030	1120

me Observations in groups of .100 second

TABLE II

Relative Depths of "C" Reflection from TdeltaT Analysis and Well

Intersections

Bores	Contig		Shot Point Elevation	, "C"	Reflect	tion	Well	Intersection
	Shot Points		(above M.S.L)	Time from Surface	Depth below surface	Depth below M.S.L.		Depth below M.S.L.
Dulkaninna	BM126/	'S2 3½	1m 107	•7309	2458	2360	1979	Artesian aquifer
Cannuwauka- ninna	-BM119 BM120	1 <u>5</u>	3m 54 3m 60	•817 •779	2825 2663	2740 🕱	2695	
Kopper- manna	BM112/1	nz i	u fift	. 857	3000	2960	2859	n u
Mulka	BM101 BM101 ¹ / ₂ BM102	14 34 18	m / 175	•935 •872 •915	3345 3065 3255	3310	3218	tt TT
Munger- annie	BM88 1 BM89		m 185 m 175	•928 •948	3315 3400	3170	3076	11 17
Mirra Mitte	a BM77/8	1 4	m 106	•957	3443	3340	3211	tt tt
Kaladeina	mikl3	2 7/3	16m 273	1.083	4005	3730	3707	11 11
Mount Gason	BM61½ BM62	11/16 13/32	6m 103 2m 113	1.151 1.108	43 1 5 4 1 23	4090	4054	17 11
Goyders Lagoon	BM47 BM48	2,′3/1 2\frac{1}{4}		1.292 1.257	4965 4 70 5	4390 4630	4555	# #
Birdsville	BM1 BB1	mt-Able	7m 148	1.064 1.055	3920 3880	3760	3530 3696	
Cacoory	RC16	12	lm 242	.807	2785	2540	2556	Artesian aquifer (surface)
Cluny No.4	RC35	14	m 265	•717	2400	2140	1975	•
Bedourie No.2	CB28	2	1m 291	•412	1230	940	1189	(surface)
D.F.S. Beetoota No	117/81 o. 1	4	m 344	•941	3373	3030		Trans. beds Mooga
D.F.S. Innamincka	230/4 No.1	4	łm 399 1	1.077	3980	3580		Trans. beds Mooga

m Depths extrapolated from relative positions of shot points to bore site

The intersections listed for the water bores are from driblers' logs. They probably represent the top of the Mooga Sandstone, but could be thinner sandstone aquifers within the transition beds above the Mooga.

Dillingan			A920	4615	4172 Bly 4435 Manga.
Orientes	•		4370	4030	3899 Mogas
Pandicherra		~	1167 4390	4-250	2057 France 4253 Mooga

Dulkaninna: Shot point BM126/S2 $3\frac{1}{2}$ miles north of bore. The general tren of the basin in this area is a gentle dip to the north.

Goyders Lagoon: Extrapolation is most uncertain due to lack of data.

Cluny No. 4: From data available, horizon appears nearly flat between that point and bore.